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Machine Learning and Cox Based Benchmarking Tool:
Exploration of Survival Models Associated with Chronic

Degenerative Diseases
by

Jorge Andrés Orozco Sánchez

Abstract

The steady evolution of technology is changing the way physicians face health issues. In fact,
the computer capacity to answer increasingly difficult questions continue to grow at a stag-
gering rate, which has opened doors to groundbreaking research. Despite this, the complex
nature of chronic-degenerative diseases and outstanding concern originated due to its signifi-
cant incidence generates even more questions to answer. On the other hand, Machine Learn-
ing (ML) algorithms have already found beneficial information on those diseases. With this
in mind, the present work reports the exploration of the CoxBenchmarking function applied
to chronic-degenerative disease datasets associated with survival. CoxBenchmarking imple-
mentation is a computer-based benchmarking algorithm that compares the Survival Models
that were constructed by several machine learning strategies. It was developed as an extension
of FRESA.CAD package and uses its Random Holdout Cross-Validation. CoxBenchmarking
provides an algorithm that generates eleven distinct survival models through feature selection
of ML-based techniques: 6 wrappers and 5 filters. Besides, the function summarizes the re-
sults with tables and graphs by providing a well-ordered data structure and a plot function.
The exploration includes the survival analysis applied to information of NBA players simula-
tion, Wisconsin Prognostic Breast Cancer, San Jose Prognostic Breast Cancer, Osteoarthritis
Initiative, and Alzheimer’s Disease Neuroimaging Initiative. All the results were compared
with previous works and tested with the same subjects, which allowed the fair comparison of
all the ML techniques. In consequence, the exploration also helps in the efforts of creating
new knowledge for each clinical case. After the study, clinical results were published in two
conferences and a journal paper is being developed. Regarding the ML methods, the results
do not inform a statistically significant difference between them. Consequently, the use of
each of the methods depends on the case to be applied.
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Chapter 1

Introduction

The strong evolution of technology is transforming the way things are done today. Accord-
ingly, it is more common that day to day new technology tools interfere in our daily life. For
example, the healthcare industry is continually evolving the way how they face the problems.
Particularly, they are extending the paths to store and analyze all the data they are producing.
These changes will affect the direction healthcare services are delivered and applied [123]. In
this context, the vast capacity of modern processors to interpret information and the facility to
store large datasets influence the ability to explore clinical information. In practical terms for
the medical area, this helps to investigate diseases and obtain learning on specific diagnoses,
treatments, and prognosis. Subsequently, this investigation helps in the knowledge of these
diseases and improves the treatments of them. Despite the continuous improvement of the
knowledge, there are diseases that, although being constantly studied, have not been able to
find a definitive solution. Hence, using the technology as a tool or direction must be the path
to find solutions and apply new methods to address this challenging problem [49].

The importance of these tools is bigger when the diseases to be analyzed are common,
have high incidence and prevalence, and affect not only people who suffer from the disease
but also generate a significant public health expenditure. This thesis will consider three of
the most important chronic degenerative diseases, Alzheimer’s dementia (AD), breast cancer
(BRCA), and osteoarthritis (OA). Trying to apply automatic learning tools in the information
of patients suffering from these diseases and thereby find a better understanding of the survival
analysis in each disease. Dementia is one of the most critical syndromes worldwide and has
one of the highest prevalence rates among the elderly [6]. According to Alzheimer ’s Disease
International, there are currently more than 50 million cases of dementia and possibly 10
million new cases each year. Among them, Alzheimer dementia (AD) represents 60%-70%
of cases [7]. Despite its very impressive statistics, the most worrisome is the lack of effective
therapy to control AD which led to the fact that between 2000 and 2015 the number of deaths
caused by the disease has increased by 123%. An amount larger than the corresponding
percentages of diseases such as Prostate cancer and Heart diseases [6]. Accordingly, a clear
understanding of the AD process and stages is essential in developing effective therapies.
Breast cancer (BRCA) is the most commonly occurring cancer in women and the second most
common cancer overall. In Mexico, the incidence and mortality of breast cancer have risen in
the past years. Changes in health-care policies in Mexico (since 2003) have changed the way
to treat this disease and now they focus on early detection and treatment since it has cure but it
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2 CHAPTER 1. INTRODUCTION

depends on the early diagnosis [2]. If this disease does not have an early diagnosis, it takes the
patient to death and that is why BRCA has a high mortality rate. GLOBOCAN’s prediction
for Mexico’s breast cancer mortality rate by 2030, is that 24 386 women will be diagnosed
and 9778 (40%) will die [21]. On the other hand, Osteoarthritis (OA) is the most common
form of arthritis; it causes considerable disability in elderly populations. Osteoarthritis does
not have a consistent technique that can be used for its early diagnosis and is more common
than expected. In Mexico, the prevalence of osteoarthritis was 10.5% [82] and despite a high
prevalence, there is no treatment or medication that can cure it. Furthermore, there is no way
to reverse or halt the disease evolution what it causes always an event on its prognosis.

The diseases create a big problem for insurance companies, government, and patients
due to the money they must expend on the treatments for these incurable diseases [49]. This
is the main reason why there is a lot of interest in studying them and finding solutions to this
problem. The attention started since there was enough capacity to analyze a good quantity
of data, on 1995, Olvi Mangasarian et al. [67] presented one of the first advances on this
topic using just computer power to process and analyze data. They proposed some linear
programming-based machine learning techniques, that are used to increase the accuracy of
breast cancer diagnosis and prognosis. They use the information found on a liquid sample
that was extracted by the process of breast fine-needle aspiration (FNA) [67]. There are other
methods and techniques that use different kinds of information for this disease. Joseph Cruz,
David Wishart in 2006 [25] mentioned that there are some machine learning applications in
cancer prediction and prognosis. They summarized some research that was published be-
fore the article; in the majority all the research use information like proteomic and genomic
data about the patient. Furthermore, they mentioned some machine learning techniques that
are commonly used on the breast cancer prognosis research such as Support vector machine
(SVM), Genetic Algorithms, Artificial Neural Networks, k-Nearest Neighbor, Naı̈ve Bayes,
and Decision Trees.

A decade later the applications of machine learning changed a bit. A growing trend
is noted in the use of supervised learning techniques, such as SVMs and Bayesian networks
(BNs). Kourou et al. [62] reviewed more than 7510 articles about breast cancer prediction
and prognosis between 2010 and 2014. Then they found three clusters inside the research:
prediction, recurrence, and survival; for which they selected the most relevant publications for
each group. Taking into concern that information, for cancer prediction is used the following
type of data: mammographic, demographic, SNPs (single nucleotide polymorphisms) clinical
and pathologic, for cancer survival the information used is from the type: clinical, genomics,
molecular and for the last group, recurrence, imaging tissue genomic, blood genomic, genetic
and pathologic [62].

In the context of AD, there are very good methods for clinical dementia diagnosis,
based on patient reports, cognitive observation, and symptomatology [96]. Some risk fac-
tors of developing the disease have even been determined, where the presence of APOE4 is
a well-known genetic factor [23]. In some cases, there are patients who do not have enough
conditions to be diagnosed with AD; but fall between the cognitive changes of aging and
early dementia, their condition is known as Mild Cognitive Impairment (MCI) [59]. There-
fore; MCI, in future AD patients, is an intermediate stage between normal aging and clinical
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dementia. Henceforth, MCI diagnosis represents a critical condition due to the increased risk
of early AD findings [36, 40]. However, detecting AD in the early stage is complex; con-
sidering that only 33.6% of the MCI subjects convert to clinical AD [74]. Hence, standards
have not been defined on the best neuropsychological results that should be used to measure
early AD [23]. On the other hand, imaging has the ability to visualize early AD [74], and
several imaging-biomarkers have been found in clinical images. These Imaging-biomarkers
have been associated with the conversion from MCI to AD [96, 37, 102, 52, 47]. The vast
majority of existing imaging studies have used information from magnetic resonance imaging
(MRI) and positron-emitting tomography (PET); and both modalities remain as recommen-
dations to monitor the progression of the disease, in addition, to detect the current stage of
neuronal degeneration [56]. Although recent studies have shown that PET has a great capacity
to diagnose the disease [79, 80, 8, 99] and that MRI details related to AD neuronal degenera-
tion in patients with MCI is not detectable by experts, MRI is preferable to PET because PET
facilities are scarce [99] compared to MRI [96].

In the case of osteoarthritis, there is less information about survival. Machine learning
tries to identify it, classify or predict how much risk exists in acquiring the disease. Beth
G. Ashinsky et al. in 2017 exposed a machine learning approach for predicting early symp-
tomatic osteoarthritis with the classification of magnetic resonance images (MRI) [10]. One
year later Tiulpin et al. in 2018 [115] presented an automatic knee osteoarthritis diagnosis
from radiographs that used deep learning to analyze the data. In the same year, Ting Hu
[49] proposed an evolutionary learning and network approach to identify the key metabolites
for this disease. Using genetic, epigenetic, and biochemical markers taken from the plasma
of blood samples they could found information about relevant metabolites. Moreover, there
is other information that could help to understand how to work with this disease. Iliou and
Anagnostopoulos [50] presented many machine learning techniques to detect and extract fea-
tures from information about osteoporosis, which is a similar illness to OA. They used clinical
information about patients who suffer from osteoporosis to create a score that could predict
the disease.

Considering all the most important disciplines for the development of this thesis re-
search, it should be stated the tools that will be used to develop the survival analysis of the
diseases. In the field of statistics, the term of survival analysis is used as the technique the
let analyze the expected duration of time until an event happens [103, 95]. Within this area,
several terms will be of great importance. Censored events, what happens when we only
know partial information about an event; hazard function, that returns the probability of an
event happening between time t and dt; Kaplan Meier that is a nonparametric statistic used
to estimate the survival function from the collection of the life data of a particular object
[103, 95, 53] and Cox model, One of the most know models for analysis of failure time re-
gression data [11], commonly used mathematical modeling technique for estimating survival
curves when considering some descriptive variables simultaneously [58]. On the other hand,
this kind of statistical methods could be applied to different manners and machine learning is
one of them. In this work, we will use different machine learning strategies to find hazards
models than mainly will use three software packages that include survival analysis algorithms.
First, in 2011, N. Simon et al. presented different regularization paths for cox’s proportional
hazards model. Penalized Cox Regression (CoxNet) component of the GLMNET R package.
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The main algorithm in the package fits the Cox Model regularized by an elastic net penalty
which lets the user change its parameters and turn the algorithm into another approach. Sec-
ond, in 2016, Bootstrapped Stage-wise Model Selection (BSWiMS) was proposed by Jose
Tamez who later described better the algorithm in [105]. This method is a function that re-
turns a set of models that best predict the result. BSWiMS is part of the FRESA.CAD R
package and it is a supervised model-selection method aimed to select a unique statistical
model that predicts a user-specified outcome, in this case, a survival outcome. Finally, in
2017, C. Wen et al. described an R package for the best subset selection (BeSS) for different
problems, one of them was the Cox regression model. This method uses an efficient active set
algorithm to choose the best possible Cox model through three different algorithms that will
be detailed later in this thesis.

Because all this awareness already generated, it is important to continue with the in-
vestigation on the survival association for this kind of disease. This thesis will focus on the
study and analysis of machine learning-based survival analysis applied to different clinical
challenges. By using simulated and clinical data, specifically, Alzheimer’s dementia, breast
cancer, and osteoarthritis information we are going to test different ML-based survival strate-
gies through the development of a Benchmarking Method. The study of different kinds of
patient’s information such as imaging data (x-rays, mammograms, magnetic resonance imag-
ing, positron emission tomography) and clinical data, will allow us to show which features are
more related to a certain event on the prognosis of the disease. This leads to used those fea-
tures to build different Cox Models that can predict the hazard of each patient depending on
his condition. Culminating in the construction of inferences that allows doctors and patients
to have more knowledge about the evolution of the disease. It is expected that with this result
exists a contribution in the knowledge of the chronic-degenerative diseases which lets to take
better advantage of the information already generated for the diagnosis; and mainly, generate
a good benchmarking framework for the ML-powered survival analysis tasks.

This first chapter presents an introduction to the problem that this thesis tries to solve.
As well as making clear the limits of research and the final objectives of the work. In the
first section, 1.1 we will find the description of the problem and the main motivation for
finding a solution. Then the hypothesis and objectives will be described in section 1.3 and 1.2
respectively. Subsequently, a conceptualized description of the solution will be presented in
section 1.4; The main contributions of the research will be described in section 1.5. Finally, a
description of the structure of this document is presented in section 1.6.

1.1 Problem definition and motivation

Chronic degenerative diseases such as breast cancer, osteoarthritis, and Alzheimer’s dementia
are relevant to public expenditure on the medical field. Besides, they are diseases with high
mortality and incidence rates, which means that their treatment and research should be a pri-
ority. Especially in countries with health problems and organizations that have to do with this
issue [21, 82]. This is the case of Mexico, a country that suffers from health problems (as
detailed in the Introduction). Those facts introduced the need of this country to find new al-
ternatives to treat chronic degenerative diseases and how the government efforts have reached
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the point of affecting its political decisions and health-care policies. These changes produced
some new ways to tackle the problem, which helped in the acquisition of new information
about the disease behavior [2]. In contrast, one of the principal concerns of patients, when
they acquire a disease, is how the disease will evolve and how their health status will be in the
future. Which in some cases is totally unknown. The lack of awareness generates discomfort
in the patient, which increases his desire to know what comes in the future. They want to
know what is the recovery time, the consequences of suffering from the disease, or simply
knowing if they will survive. All those questions can be resumed in the medical term, progno-
sis. Prognosis is known as the behavior or evolution of the disease. It has a direct relationship
with the diagnosis and, consequently, with the treatment. Besides, it allows an idea of the
future by describing the likely course that the disease will have in each particular patient [66].
Precisely here, is where the importance of the prognosis and the survival exploration of the
disease lies. Each patient can follow a different path that could result in particular treatments.

The success of personalized medicine depends on having an accurate diagnosis that
permits the doctor to distinguish which therapies or treatments will benefit the patients in a
better way or to know which therapy works have a better chance of a good response [44].
Nowadays, personalized medicine lets us obtain vast information about the patient. That
information is combined with all the screening information and creates a big dataset for each
subject. In that context, and considering what was described in the last section, there is a major
interest in studying the behavior of chronic-degenerative diseases. Especially because of all
the knowledge that is attached to the treatment and diagnosis process. This new knowledge
could lead us to find new solutions and help the efforts of personalized medicine. There is
research on each of the diseases, but not all of them focus on the study of disease survival.
Most of the efforts have been made in the area of diagnosis. It is for this reason that it
was possible to have a great development in diagnostic tools for an early or more precise
knowledge about the health condition.

Some studies already found that the information used to find a better way to predict the
behavior of the disease (survival analysis) is generated from data that doctors have access to
[10, 49, 115]. Clinical information combined with imaging data created the datasets that are
used to diagnose the disease in all cases. This information could also be used to found derived
information that is more informative. In some cases, this information is obtained through
processes that, in general, exceed the budget of people who suffer from the disease or generate
excessive spending in health sector organizations. This is even more complicated when you
need this information in places where diseases such as breast cancer have a greater impact;
this for being low-income and middle-income countries. In these places, the mortality and
incidence rates are higher than in other countries. Mexico as an example of a middle-income
country has a statistic in which it is mentioned that, of all the people who suffer from BRCA,
58% belong to this economic group [21]. What causes the methods used in the techniques
already investigated, are more difficult to achieve or not focused on the population with higher
incidence rates. An alternative to the information is to use all the information that is already
commonly generated at the time of making a medical history to diagnose a disease. Among
these data, diagnostic images are found; which are the first to give information to doctors
about the condition of their patient. These images are currently much more studied due to the
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high possibility of working with larger datasets and also because of the evolution of pattern
recognition algorithms. Known as Radiomics, this science allows the use of a digital image
as data that will be mined to find relevant information. The great acceptance of these analyses
and the use of developments in this field have generated very good results in the last decade
[41]. One of the examples is Wibner et al. which showed what Haralick texture analysis
has the potential to enable differentiation of cancerous from noncancerous prostate tissue
through the analysis of the information given by images generated in magnetic resonances
[119]. This type of research is made with magnetic resonance (MRI), but regrettably, they are
not accessible either. That is why although MRI images are used because of its precision, it
does not imply that the same development and application made on those images, cannot be
done on radiographs and mammograms. In consequence, it is better to apply the knowledge
and development of this science to images of more accessible costs such as those previously
mentioned.

In other cases, there are countries and institutions with enough capital and interest to
invest in medical investigations. This has led to the existence of initiatives that collect in-
formation about patients, the data that allow knowing about their status at the time of be-
ing diagnosed with the disease, and the follow-up information of the subsequent visits at
the observation of treatment stage. These data in some cases have been released for free
study. One of them is the osteoarthritis initiative (OAI). OAI is a public-private partnership
jointly sponsored by government institutions led by the National Institutes of Health (NIH)
and the pharmaceutical industry. The main objective of the initiative is the identification of
the most related biomarkers of development and progression of symptomatic knee OA [83].
Another organization is the Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI be-
gan in 2003 as a public-private partnership too and is led by Principal Investigator Michael W.
Weiner, MD. The main objective of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD) [84]. This type of database
allows much easier research and exploration of different techniques to find information de-
rived from the current data. Considering that several techniques have already been tested in
these diseases, this study tries to concentrate on the field (survival analysis) in which, to our
knowledge, has not been explored extensively. Depending on the disease, several databases
were selected that have the necessary information to produce new results.

There are already research focused on trying to solve these problems and three of them
are similar to the research that will be carried out on this thesis. However, there are still spaces
in which important knowledge can be added. On the side of breast cancer, it is found that there
is some work with the same type of information that will be used in this study. Rodriguez-
Rojas et al. [93] used feature selection techniques to find features in the segmented portion of
the image obtained from the mammography screening process; to find characteristics in high-
risk cases in 2013. In 2018, Tamez-Peña et al. [105] extracts features from mammography
images to find possible correlations with clinical molecular signatures in breast cancer and
later with the use of multivariate analysis under stringent cross-validation to train models pre-
dicting recurrence scores. And although this study was done to predict the risk of recurrence
with mammography; By not doing the study with the real data of survival of the patients (hard
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test), it leaves an area of opportunity that will be taken advantage of in this approach. On the
other hand, in the osteoarthritis field, there is also research but this time to a lesser extent.
Ashinsky et al. [10] investigated the early prediction of osteoarthritis through the classifica-
tion of characteristics in magnetic resonance imaging, using machine learning. This article
makes use of the data available in OAI; however, the study uses only the characteristics of
magnetic resonance images and not the x-rays information. On the other hand, the relation-
ship between the characteristics and diagnosis is carried out; instead of the survival study of
it. In Alzheimer’s Dementia field, there is also some research. Ke Liu et al. [63] presented an
article with risk factors on the MCI conversion by combining Independent component anal-
ysis and the multivariate Cox proportional hazards regression model with the information of
the ADNI database. In this case, this study showed a similar strategy with the Cox model, but
in this work, the model will be building and selected by machine learning techniques.

Considering the clinical importance and the concern generated by each of these dis-
eases, the amount of information available about the patients who suffer from them and the
development of machine learning techniques for the survival study, The problem that faces is
there is no consistent technique that relates the patient’s information to the risk of happening
event in each disease, and although there are machine learning techniques that allow the con-
struction of survival models with Cox regression, they have not been used to explore this type
of information. That is why on this thesis, we propose an exploration of different machine
learning techniques to perform the analysis of survival in three diseases, in which there is
enough information to be able to relate characteristics to the risk of an event happening when
suffering from the diseases. This exploration, together with a fair comparison between each
technique, will allow us to find a model that shows which patient features are more related
to the event. The benchmarking approach to the solution is very informative and will allow
generating conclusions that together with more medical studies could have great clinical im-
portance and therefore, help the decisions that can be made when selecting treatments for
different diseases.

1.2 Objectives

1.2.1 Main objective
The main objective of this thesis is the evaluation of several machine learning techniques used
in the context of survival analysis. Through a fair Benchmarking evaluation between Cox
survival models enhanced by these strategies. These models have to be analyzed with diverse
data sets, especially those that are part of clinical data of chronic degenerative diseases. The
Benchmarking method will provide significant information for the clinical evaluation of the
prognosis of chronic degenerative diseases. The information that will be used to compare
the strategies come from diagnostics images, Radiomics, Genomics, clinical information and
some other patient data regarding disease screening which are already part of the normal
clinical practice. The Benchmarking process will consider several statistics calculated from
the models generated to analyze the behavior of each of the strategies in the context of survival
analysis. The comparison of these statistics, selected characteristics, execution times, among
others, will allow us to find the machine learning method of the selected approaches in our
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study, which is better suited to different clinical situations or simulated in survival-based
models. The information and statistics reported are expected to add relevant information in
the context of disease survival and provide the doctor and patient with relevant information
to make decisions about how the treatment will be. On the other hand, the results are also
expected to justify the generation of a fair method for the evaluation of survival models. In
this context, the objectives that must be met to achieve the main objective are:

1.2.2 Particular objectives
• To implement a computer-based comparison tool that allows finding a survival model

and report statistics for each of the algorithms. The tool must summarize the infor-
mation resulting from each model and return tables and graphs that facilitate the re-
searcher’s work.

• To condition and prepare the data of different patients belonging to different the differ-
ent studies or initiatives selected for this study. This prepared data will form a database
ready for the application of diverse machine learning techniques.

• To analyze and compare the ability of each of the studied algorithms to select character-
istics and build the survival model in different clinical cases. Subsequently, to know on
which situations the selected algorithms work better. The comparisons have to use the
results of the Benchmarking process can be compared to previous works and the ground
truth (data simulation).

• To compare the selected techniques in computational terms, taking into account the
times for the construction of the model and the complexity of each of the algorithms.

1.3 Hypothesis
Taking into account the issues already discussed on the problem and knowledge about the
learning generated in the previous investigation, it is important to propose new directions of
understanding and examining the data of chronic degenerative diseases through the use of
technology development to improve strategies already used. That is why, the hypothesis of
this thesis is defined as: Several machine learning algorithms allow the construction of reliable
survival Cox models that allowed study chronic degenerative diseases; through the selection
of clinical features such as mammograms, X-rays, MRI and PET, forms and clinical data about
the patient. The reported results and the comparison of just the results will allow the researcher
to find relevant information that subsequently inspires the creation of new knowledge in the
context of the expected outcome for each disease. This derived information will help the
medical area to have additional knowledge about the patient’s disease, which will help in
future clinical decisions.

With this hypothesis the research questions to answer are:

• What is the concordance index produced by the characteristics extracted in the diseases
so that the results of this index can influence medical decisions reliably?
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• Among BSWiMS, GSPDAS, SPDAS, LASSO, RIDGE and ELASTICNET which are
algorithms used in this thesis, what alternative will result in the most effective model
to predict risk in an early event? Which model will achieve a better separation between
high and low-risk patients? What metric is the one that allows determining which model
is on the other?

• Of the models mentioned in the previous question, what kind of problem does the algo-
rithm work best? Of the selected machine learning methods, which one selects the most
reported and known characteristics in the literature?

• Is this type of analysis really accurate enough to improve common procedures?

1.4 Solution Overview
As described, there is a very important problem in the treatment of chronic degenerative dis-
eases. Despite all the efforts to know, treat them and especially to prevent them, the number
of people who suffer from it and the prevalence rate per year continue rising. Some new tech-
niques are already described and others are still in development for each disease. Considering
this, it is natural, that with the development of technology, they will find themselves more
and more and it will be easier to look for more alternatives that help control the mentioned
diseases. That is why the technology already developed has allowed collecting a huge amount
of information about patients since such information can be considered to draw conclusions
that help in medical practice.

Unfortunately, each advantage comes with a disadvantage, and despite being able to
know more information about the diseases, access to it, either for study or only for treatment,
is complicated by different issues. However, some institutions and initiatives have been ded-
icated to investing in the health area to collect information that can be studied and, in turn,
can help these patients with the treatment of their respective diseases. These initiatives make
the use of such information and let us take advantage of the opening of different sources and
in various diseases a lot easier. This thesis seeks to combine the development of computa-
tional technology, coupled with statistical analysis, for the study of information on patients
with chronic degenerative diseases. In other words, the statistical analysis of survival powered
by machine learning techniques tries to study the relationship of medical measures, extracted
from various imaging sources of patients suffering from chronic degenerative diseases, with
the possibility of suffering an event in the context of same disease That is, for example in the
case of Alzheimer’s disease, it will be sought to find such a relationship between the patient’s
measurements and the time of change of Mild cognitive impairment towards Alzheimer’s
dementia, what also will help obtaining information on the rate of conversion for each char-
acteristic. This study bases its main contribution to the combination of two robust tools for
data analysis. On the one hand, the statistical analysis of survival, which can provide clear
and concise information that could help clinically for medical decision making. And on the
other hand, the implementation and use of machine learning techniques that allow the analysis
of large amounts of data, improving the production capacity of statistical models that provide
adequate information. Specifically, this thesis will focus on three diseases and will use 4
different machine learning techniques for analysis. The comparison and evaluation of each
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one of the techniques will allow discussing the results that in the future could have clinical
relevance.

1.5 Main Contributions

In recent years, Machine learning has provided researchers numerous tools to explore com-
plex models of associations between survival outcomes and clinical features or biomarkers.
These tools are powerfully and complex at the same time, hence a systematic way to explore
them is required to understand their potential and application on clinical and survival stud-
ies. Embedded statistical learning like L1 penalization (CoxNet), wrappers model selection
(BSWiMS), and Best Subset Selection (BeSS) are among the machine learning frameworks
available to researchers. Survival analysis based on multivariate Cox regression has a great
potential to enhance diagnosis and understanding of the diseases, but current studies have
been limited to small cohorts and a small set of imaging biomarkers.

Subsequently, considering these fields as research opportunities and, therefore, giving
major importance to possible new knowledge, the main contribution of this thesis is the
”CoxBenchmarking” implementation. CoxBenchmarking is an open source and free compu-
tational tool for the comparison of Survival Models constructed through 11 machine learning
algorithms based on the Proportional Hazards model. This contribution also carried out a
test of its performance with simulated information and considered the clinical exploration of
chronic degenerative diseases. Specifically, it used datasets of Breast Cancer, Alzheimer’s
dementia, and Osteoarthritis. Each disease defined a particular survival event. Besides, this
tool also provides a fair and graphic comparison of the ML methods, through the plot function
that was also implemented for this thesis. Regarding the clinical contribution of this thesis,
the research has already led to the publication of two relevant scientific papers in the medical
field. It also stands the basis for great new research in the same context. In the next few years,
the clinical importance of the results will be measured. Regarding the computing context, the
implementation of a comparative evaluation technique contributed through the interpretation
and unification of the results of eleven algorithms in a single model. CoxBenchmarking gives
researchers the power of using several Machine Learning tools and also the ability to interpret
the results through the statistics reported. Which even allows them to make the comparison
and select the method that best suits the solution they are looking for.

1.6 Outline of the Thesis

The outline of this thesis that describes the evaluation of different machine learning ap-
proaches to build clinical-based survival models, describing the rate of suffering an event
on some chronical degenerative diseases, is detailed below:

In this chapter 1, the motivation of the problem to be solved with the investigation of this
thesis, is introduced and described. The objectives are described and limited and the hypoth-
esis is detailed. In the next chapter 2, we describe the background information about survival
analysis, cox model, Kaplan Meier curves, evaluation, and validation test, machine learning
methods that will be used and among other topics. In chapter 3, the solution methodology of
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the present investigation is described. All the methods used and the description of each data
set to perform the experiments are detailed. These experiments are described in the next chap-
ter 4, where graphical representations and details of each of the results are presented. Finally,
in chapter 5, the results are discussed, conclusions are generated and the possible future work
of this thesis is shown.





Chapter 2

Background Work

This chapter provides a context for the main topics and definitions necessary to understand
the research corresponding to this thesis. For this, documents, books, and research that are
relevant in the area are taken into account. First, an introduction is presented for three chronic
degenerative diseases selected due to the high mortality and prevalence rate they currently
have. These three diseases also have information banks available with a collection of patient
data; These data openly and freely allow the study of this disease. The information of each
of the data sets used will be described in the next chapter Chapter 3. The first of the diseases,
although its prevalence is higher in the female population, can also be found in men. Breast
cancer (BRCA) due to a large number of affected annually, means a large public expenditure
and especially human losses [110]. The following two diseases have a higher prevalence in
the elderly population [76, 6]; osteoarthritis is a degenerative joint disease and Alzheimer’s
disease is a chronic neurodegenerative disease.

After the context of a doctor who will help to understand the data that will be studied in
this thesis, this chapter will describe the technique of statistical analysis that will be used in
the available data, Survival Analysis. This statistical technique provides us with a set of meth-
ods to analyze data where the objective of the study is the time variable that elapses until the
occurrence of an event of interest. From this statistical analysis, many terms and notions are
derived that are necessary to understand the proceeding of the analysis. Within this chapter,
you will find definitions of Kaplan Meier Curves, LogRank Test, Survival models. Consider-
ing the survival models, a wide range of solutions are mentioned in the chapter, but we will
pay great attention to Cox Regression being one of the most used models with reasonably
good estimates.Subsequently, the computational techniques that will be used are described.
A set of diagrams and explanations will allow the reader to understand the operation of the
algorithms used, as well as the machine learning strategies that are part of the research. As a
penultimate topic, this chapter details the metrics that will be used to present a fair and valid
comparison between the models generated by this research. Finally, here it is taken into con-
sideration the techniques used to validate the results, various cross-validation strategies are
described.

13



14 CHAPTER 2. BACKGROUND WORK

2.1 Chronic degenerative diseases
In order to carry out the research and above all to show the theoretical sustenance of the
proposal, it is necessary to know about the survival of chronic-degenerative diseases, events
that can occur within the diseases; the methods used to analyze data and extract features from
the images. It is also necessary to know information about the methods used to calculate the
survival of diseases. Below, all the theoretical bases of the present investigation are detailed.

Chronic-degenerative diseases are an extremely worrying topic in the modern age. They
are currently the leading cause of death in most developed countries. Their multiple factors
and diversity make them very difficult to control [27]. These types of diseases are character-
ized by having the following qualities:

• Multiplicity in clinical conditions, covering thousands of nosological entities

• Multiple locations of injuries

• Multistep pathogenesis

• Multifactors that generate the disease. Various types of risk factors

This kind of disease is more common on the longer-lived populations and considering
the life expectancy is longer the chronic-degenerative diseases are more common [33]. Breast
cancer

2.1.1 Breast cancer
It is the most common type of cancer in women, but men can also suffer from it. In the female
sex, it affects approximately 10% of its population and in recent years the incidence has not
stopped [2, 109]. Breast cancer begins when cells in the breast start to grow in ways that are
not normal. These cells that behave differently, tend to form a tumor that can be detected
through a mammogram or by a process known as Touch-Look Check (TLC). If the tumor is
malignant, it is considered cancer and, in that case, it begins to invade all the tissues of nearby
areas of the body [109].

Depending on where it is generated, it is a different type of cancer. The most common
types are those that start in the mammary glands (known as lobular cancers) and those that start
in the milk ducts (ductal cancer). There are other kinds of cancer, but they are less common;
however, when cancer starts in other tissues inside the breast they are not considered BRCA
anymore (sarcomas, lymphomas). Of the types of cancer mentioned, you can find variations
that change in the way they are shown in the early stages. Many of them do not generate
lumps in the breast and even get to have no symptoms. However, all of them can be detected
through mammograms. This allows that the use of them can be used for research [109, 20].

Breast cancer screening and mammograms

This is the first step to diagnostic the disease to someone; and in cancer, mammograms are
a big part of screening [20]. Regarding BRCA screening, scientists are trying to detect can-
cer before symptoms appear, to do that, certain methods can be used, and one of them is a
mammogram.
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A mammogram is an x-ray picture of the breast. When the mammogram is used to
detect cancer on someone who has no signs of cancer, it is called screening mammograms.
On the other hand, if the mammogram is used after a lump or other sign is present, it is called
a diagnostic mammogram. The main difference between these two kinds of mammograms is
the time to perform the test and the images, views, and angles that are the outcomes expected
[20, 116]. Diagnostic mammograms are chosen to make an accurate diagnosis and therefore
they might be helpful for prognosis prediction.

2.1.2 Osteoarthritis
Osteoarthritis is a degenerative joint disease, is one of the most common chronic degenerative
diseases. It primarily affects the articular cartilage and most of the time is associated with
aging. OA will most likely affect the joints that have been frequently used throughout the
years including fingers, hips, and knees [121] which is the one that we are going to use in the
research.

Osteoarthritis takes importance when its numbers show a great incidence throughout
the world. Currently, the disease has already entered the top ten of disabling diseases in the
most developed countries; worldwide there is a rate of 18% of women and 9.6% in men over
60 who suffer from the disease. However, the behavior of the disease before age 45 favors
women who suffer from it in smaller amounts; after this age, the percentage is reversed again.
Of all these people with the disease, 80% have limitations in their movements, consequently,
25% of them cannot carry out their daily activities [121, 76]. Concentrating on the knees is a
consequence of the fact that this is the joint that is most commonly affected by this disease.
Symptoms may include swelling, stiffness, and pain that causes problems when walking or
doing some physical activity. This kind of osteoarthritis can lead to disability [76]. To make
a correct diagnosis of the disease, many doctors make use of various methods and tests on
patients; including data from his past, physical examination, laboratory tests, and x-rays.

2.1.3 Dementia
Dementia is a syndrome that generates deterioration in cognitive function, in other words, the
ability to think [7, 122], which goes beyond the expected deterioration of normal aging. This
deterioration commonly affects memory, thinking, and judgment, which affects the action
of most daily tasks; however, consciousness is not affected. Dementia is one of the leading
causes of disability and dependency among older people around the world [122]. The main
problem is that, besides, there is a disease that causes disability, the number of people who
suffer from it is gigantic. Around the world, around 50 million people have dementia and
almost 10 million new cases are produced every year. And within these cases, Alzheimer’s
disease is the most common form of dementia and can contribute to 60-70% of cases [7, 122].

Alzheimer’s disease

Alzheimer’s disease is a chronic neurodegenerative disease that usually starts slowly and grad-
ually worsens over time. And while cognitive loss is common with aging, Alzheimer’s is not
normal in aging [6, 7]. The greatest known risk factor is the increase in age, and most people



16 CHAPTER 2. BACKGROUND WORK

with Alzheimer’s are 65 or older, yet Alzheimer’s is not just an old-age disease. Alzheimer’s
disease is a progressive disease, in its early stages, memory loss is slight, but later, people
lose the ability to hold a conversation and respond to their environment. These symptoms are
described as dementia, and in the case of this disease, they continue until death. Alzheimer’s
disease has no current cure yet, the efforts to improve current treatments or seek new solutions
have not been stopped. Although current treatments for Alzheimer’s can not stop the progress,
they can temporarily delay the deterioration of dementia symptoms [6, 7].

Plaques and Tangles Despite knowing a lot about the brain and all the advances that have to
diagnose the disease, it is still unclear what causes this disease. Most research seems to agree
that there are two proteins in the brain that are the main suspects of causing the deterioration.
One is beta-amyloid, and the other one is p-tau both reaches abnormal levels in the brain of
someone with Alzheimer’s [72].

2.2 Survival Analysis

Statistical analysis known as survival analysis is a technique that lets analyze the expected
duration of time until an event happens. The event could be of any kind such as battery dis-
charging, time a lightbulb will last, or in a clinical context, the time a person that is diagnosed
with Cancer, OA or Alzheimer’s disease can turn into an event, such as recurrence, total knee
replacement or Alzheimer’s dementia. [95, 103]. In other words, we can define the term as a
collection of statistical procedures for the analysis of data for which the variable of interest is
the time until an event occurs. The time measure could be any time unit, such as day, month,
week. It is usually called survival time. And by event, usually called failure, every activity
that may happen to an individual or a thing could be considered.

In survival analysis, there are some terms that are the main base on how it works. Such
terms are very commonly used so they will be defined as follows:

• Censored event: If a subject does not have an event during the observation time, they
are described as censored. Nothing is known about the subject, but neither is it known
whether or not it had an event at that time or after it. Nothing is known about the subject
but neither is it known whether or not it had an event at that time or after it. In the case
of health, it usually happens that some patients do not return to the same institution,
whether due to death, change of institution or other reasons. And because you can not
infer a result the event is censored [103].

• Event: Any type of action that may happen depending on the chosen topic. In the case
of diseases, you can have: Death, disease occurrence, disease recurrence, recovery or
another kind of event depending on the disease [95, 103].

• Survival function S(t): The probability that the subject will survive in the given time.

• Time: The time in which survival will be considered. In the medical area, the time is
taken from the beginning of the treatment or the diagnosis of the disease.
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2.2.1 Hazard Function
Also known as hazard rate or force of mortality, this function is denoted by the lambda sym-
bol (λ) and is defined as the event rate at a time t given by the survival time. Returns the
probability of an event happening between time t and dt [95]. In other words, The hazard
function h(t) gives the immediate potential per unit time for the event to occur, given that the
person or object has already survived the time t. It is denoted by h(t), is given by the formula
2.1 [103, 95]:

h(t)dt = lim
∆t→0+

P (t < T ≤ t+ ∆t)|T > t

∆t
=
f(t)

S(t)
, (2.1)

Where h(t) equals the limit, as ∆t approaches zero, of a probability statement about
survival, divided by ∆t, where ∆t denotes a small interval of time. Integrating h(u) over
(0, t) gives the cumulative hazard function H(t) that describes the accumulated risk up to
time t.

h(t)dt =

∫ t

0

h(u)du. (2.2)

The h(t) is always non-negative and has no upper bound. Different types of hazard
functions could lead to different survival models. In contrast to the survival function S(t), the
hazard function is looking for an event that makes the subject fail or in other words, is looking
for an event where the individual not survive. Therefore, the hazard function allows us to
obtain information contrary to that provided by the inverse function that the survival function
[103, 26].

2.2.2 Formulation
Knowing these terms is easier to understand the operation of survival analysis. And therefore,
also the formulas that are postulated for its resolution [95, 26, 103]. Take T as a non-negative
random variable that represents the lifetime of individuals in a population. In the case in
which T is continuous, let F (.) be the distribution function of T and f(.) the probability
density function. (f(t) = 0).

F (t) = P (T ≤ t) =

∫ t

0

f(x)dx (2.3)

given that, the complement function that means the probability that an individual sur-
vives to time t is given by the survivor function:

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(x)dx. (2.4)

The survival function tends to be 0 while the age increases.
Having defined S(t), H(t) and h(t). Therefore, we can get:

h(t) = −dS(t)/dt

S(t)
= −dlog(S(t))

dt
,H(t) = −log(S(t)), S(t) = exp(−H(t)), (2.5)
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because t is in the interval 0 to ∞ the following properties have to be considered into
survival function:

1. Survival function is not increasing.

2. At time 0 the S(t) = 1 and in t =∞ is 0

2.2.3 Censoring
Censoring happens when we only know that there is some information about an individual in a
given survival time, but we don’t know the survival time exactly. In other words, censoring is
referred to as partial observations [103] and this partial information is about a random variable
of interest. There are usually three reasons concerning how censored data may occur or why
censoring may happen [57]. These reasons will be based on the assumption that the survival
analysis will be made on the healthcare area survival:

1. The event does not happen before the study ends.

2. A person is lost to follow-up during the period which the study is in progress

3. A person leaves the study due to death. This always and when the death is not the event
of interest and for which the analysis is being developed. Or there is some other reason
why the subject leaves the treatment.

There are three types of data that could be censored that will be described and also
represented on the figure 2.1 [26]:

Censoring types

There are different types of censoring. The definition of each type is important due to the fact
that different types lead to a different type of data preparation.

(a) Right censoring: It occurs when the person’s true survival time turns into an incomplete
at the right side of the follow-up period (described on each analysis) which is occurring
when the study ends or when the person is lost to follow-up or is withdrawn of the
study. This kind of data is usually known as right-censored data. For these, the complete
interval of the survival time is unknown for the analysis, it has been censored at the right
side of the observed survival time interval. In other words, right-censored data occurs
when just exists the knowledge of the variables that exist, but we do not know anything
in the range of the time of survival [57, 103].

(b) Left censoring: On the other side, there is another kind of censored data, Left censoring
happens when you can only observe just several random variables instead of information
that are inside of the time we need to complete the study. It can occur when a person’s
true survival time is less than or equal to the person’s observed survival time. In the
case of this thesis we can have left-censored data when a patient is diagnosed with
osteoarthritis disease, but it is not known since when exactly the disease began in his
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Figure 2.1: Censoring types in a study.

body, he is only known about his current situation. In other words, if a patient is left-
censored at time t, we know they had an event between time 0 and t, but we do not
know the exact time of the aforementioned event.

(c) Interval censored: Survival analysis data can also be interval-censored, this type of
censoring can occur if a person’s true and unobserved survival time t is inside of a fixed
interval of time. As an example in this thesis data there are some cases where a patient
is in a constant control of their diseases. Interval-censoring actually incorporates both
right-censoring and left-censoring as special cases. The data censored on the left occurs
when the value of t1 is 0 and t2 is a known upper limit on the actual survival time. In
contrast, the data censored on the right occur when the value of t2 is infinite and t1 is a
known lower limit on the actual survival time.
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2.2.4 Approaches to Survival Models
Depending on the hazard function complexity, different survival models could be constructed.
If the h(t) is constant, then the survival model is exponential. If the hazard function increases
over time, the model will be an increasing Weibull model. On the contrary, if it decreases over
time the model will be a decreasing Weibull. There are other times that the hazard function
increases and later decreases; for those cases, the model will be a lognormal survival model. In
all these cases, it is assumed that the survival models follow a known distribution, as the ones
mentioned. When a know distribution is assumed the model is called parametric survival
model [57].

Distribution Survival function Hazard function

Exponential exp(−λt) λ
Weibull exp(−λtp) λptp−1

Log-logistic 1
1+λtp

λptp−1

1+λtp

Table 2.1: Kinds of survival models

Three are the most commons distributions on survival models. In table 2.1, we show
the survival and hazard functions of those commonly used distributions. The Exponential
distributions as was mentioned before, have a constant hazard function, represent by the λ
symbol.

Exponential and Weibull models

Exponential model It is the simplest parametric survival model. If the hazard functions
are constant, then the distribution is exponential. The hazard function is represented by the
symbol λ. In the case of an exponential model, if the base risk (risk in t0) is a constant and the
risk value is doubled or tripled, the new risk remains constant but with a greater value. On the
other hand, if the risk changes two or three times faster, the new risk doubles or triples, but is
constant over time, so we remain in the exponential family [92].

The baseline risk is constant over time λ0(t) = λ0. Therefore, the exponential risk
function based on a set of i variables on x

λi(t, xi) = λ0exp(x′iβ). (2.6)

Weibull model The second most common distribution is Weibull distribution. It is the most
widely used parametric survival model. It uses two parameters λ and p. In this case, Weibull
reduces by the exponential if p = 1. p is the shape parameter and it determines the shape of
the hazard function. If p > 1 the hazard increases with the time. If p = 1 the Weibull model
turns into an exponential model. And it p < 1 then the hazard decreases over time. The new
parameter gives the model the flexibility that the exponential model does not have,

Using both parameters the survival function on a Weibull distribution is given by

S(t) = exp(−(λt)p). (2.7)
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Hence, the hazard function is:

λ(t) = pλ(λt)p−1. (2.8)

Log Logistic

Log-logistic is a parametric model in which the risk rate initially increases and then decreases
and, sometimes, can be hump-shaped [4]. It is defined by the following equations:

S(t) =
1

1 + λtp
, (2.9)

and the hazard function

λ(t) =
λptp−1

1 + λtp
. (2.10)

Log logistics is a parametric model in which the risk rate initially increases and then
decreases and, sometimes, can be hump-shaped [4]. It is defined by the following equations:

2.3 Kaplan Meier

The Kaplan Meier (KM) curves are an alternative representation of survival analysis data.
The basis of it is part of a layout representation of the information that goes like this: Taking
into account the information organized in a table, the first column in the table would have
the information referring to the survival times, ordered from lowest to highest. The second
column denotes the frequency of failures in each different failure time. The third column
provides frequency counts of those people censored in the time interval that begins with the
time of failure until the next time of failure, but without including it. The last column provides
the set of risks, which denotes the collection of individuals who have survived at least the
corresponding time.

To estimate the probability of survival in time t, we use the risk of that moment to
include the information we have about a person censored up to the time of censorship, instead
of simply ignoring that information. That survival probability is calculated with the Kaplan
Meier method.

Kaplan Meier Estimator

The Kaplan–Meier (KM) estimator is also known as the product-limit estimator (PL estima-
tor), it is a non-parametric statistic used to estimate the survival function from the collection
of the life data of a particular object. Within the area in which this thesis is focused, it is often
used to measure the number of patients who survive in a given period of time after treatment,
where the treatment and the measuring process is made depending on each disease. The esti-
mator is named like that because of the authors Edward L. Kaplan and Paul Meier, who jointly
produced the document that described this estimator. The estimator is given by the following
formulas [95, 53, 103].
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Ŝ(t) =
∏
i: ti≤t

(
1− di

ni

)
, (2.11)

with ti a time when at least one event happened, di the number of events that happened at
time ti and ni the individuals are known to survive (have not yet had an event or been censored)
at time ti. One of the definitions needed to understand better this estimator is esf . Where to
understand that it is required to treat this data like it does not have any censored event. Let ti
denote an ordered observed value. The empirical survivor function (esf), denoted by Sn(t), is
defined to be [103].

Sn(t) =
# of observation > t

n
=
{ti > t}

n
. (2.12)

The Sn(t) is the proportion of patients still in remission after t weeks. Kaplan-Meier
estimator adjusts the esf to reflect the presence of right-censored observations.

The KM estimator is one of the most frequently used methods of survival analysis. It
is also used to the probability of death, examine recovery rate and the treatment quality. It is
limited in its ability to estimate survival adjusted for covariates; and that is why to solve this
limitation is needed the study of other concepts as parametric survival models and the Cox
proportional hazards model that will be useful to estimate covariate-adjusted survival [57, 58].

time (days) mf qf nf S(tf )

0 0 0 257 1
1000 74 47 257 0.53
2000 25 65 136 0.18
3000 7 20 46 0.07
4000 1 18 19 0

Table 2.2: Group 1 (Males) alternative ordered layout. mf is the number of events at time t.
qf number of censored subjects at time t. nf set of subjects who are at risk of failure

time (days) mf qf nf S(tf )

0 0 0 185 1
1000 52 42 91 0.49
2000 24 47 20 0.11
3000 3 7 10 0.05
4000 1 9 0 0

Table 2.3: Group 2 (Females) alternative ordered layout. mf is the number of events at time
t. qf number of censored subjects at time t. nf set of subjects who are at risk of failure

In order to better understand the operation of the KM curves, it is first necessary to be
able to visualize the tabulated data unusually, that is, not the raw data table. This new table-
like visualization allows us to understand the operation and the bases under which the Kaplan
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Meier curves are generated. To show this visualization, the information that will be used later
will be used in one of the experiments of this thesis. On this table we found information
regarding ADNI database. Information about those data will be described on the Chapter 3.
By using this information we are trying to compare the survival information of two cohorts
on the ADNI data, males and females with risk of Alzheimer’s disease. In the Tables 2.2,
2.3 we find the column corresponding to the information about time with a specific unit. The
grouping of the other columns depends on the values of this column; so a unit of time is
usually selected with which a series is started from the first value until reaching the study
completion date (Ex: Week 1 - Week 52, Interval: 1 week). In this case, these times are in
the unit of time: days (This is not a limitation for the display, any unit of time can be used to
organize the data, depending on the convenience).

Figure 2.2: KM Curves sex-stratified between 442 Alzheimer’s disease patients

Depending on the interval and the unit selected, the number of rows that the table will
have changes. Each row symbolizes a time t in which the events that happened or were
censored at that time were grouped. Continuing to the right, the next column mf shows
the count of the failures within the detailed time. that is to say, the number of the events
occurring up to said time t. The third column qf denotes the frequency of people who have
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been censored in the corresponding time. Finally, the following column R(tf )ornf shows
the group of individuals who are at risk of failure. This column only counts individuals who
survive in time t. These data allow the calculation of a probability of survival using the group
of individuals at risk in time t. Using the conjunct of at-risk individuals aims to allow the
use of censored subject information within the study and not just discard such information.
This probability is calculated using the Kaplan Meier method already detailed. A plot of KM
survival probability is shown in figure 2.2.

2.3.1 Survminer
Survminer is R package for Drawing Survival Curves using ’ggplot2’. The main purpose of
the package is Survival Analysis and Visualization. Developed by Alboukadel Kassambara
[54]. Using one of its methods ggsurvplot we can graph survival curves in a simple way.
This method makes use of the survfit function of the survival package [112]. This function
calculates an estimate of the curve of the data censored using Kaplan-Meier or Fleming-
Harrington or calculates the survival function with Cox. By default, Survminer makes use of
Kaplan-Meier. Different parameters can be sent to make the graph, risk data can be included
in a table, information on the number of subjects that have not yet experienced the event and,
above all, the most important thing is that it allows combining different curves in the same
graph. This characteristic is what will allow us to have curves of high and low-risk groups for
different diseases.

2.3.2 Log Rank Test
Once it is possible to represent the survival data in a graphic and orderly way, it is necessary
to find metrics that allow comparing different behaviors in the population groups. To evaluate
when two KM curves (described above) are statistically equivalent or not, the Log-rank Test
metric is used. Conversely, the Log-rank test is a long subset of chi-square tests that provides,
through the test criteria, an overall comparison of the KM curves. The method makes use of
the observed data against the expected values in the counts on the outcome categories. Once
again, using ADNI data will exemplify the use of this technique for the calculation of the
comparison metric.

times (days) n1f n2f m1f m2f e1f e2f

0 257 185 0 0 0 0
1000 257 185 74 52 73.26 52.43
2000 136 91 25 24 29.36 21.39
3000 46 20 7 3 6.97 3.02
4000 19 10 1 1 1.31 0.80

Table 2.4: Tables 2.2 and 2.3 combined. Number one 1 in the underscore section of the
columns’ names denotes group 1 (males) and the number two 2 (females). e is the expected
value t

In this case, two more columns were added to the results of the tables that were used for
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KM. Cell counts with the expected value for each group were added. The formula for these
values is shown in equations 2.13 and 2.14

e1f =

(
n1f

n1f + n2f

)
× (m1f +m2f ), (2.13)

e2f =

(
n2f

n1f + n2f

)
× (m1f +m2f ). (2.14)

The first part of the equation represents the proportion in the risk set and the second part
is the number of failures over the both groups.

times (days) m1f m2f e1f e2f m1f − e1f m2f − e2f

0 0 0 0 0 0 0
1000 74 52 73.26244 52.42885 0.737557 -0.42885
2000 25 24 29.35683 21.38974 -4.35683 2.610258
3000 7 3 6.969697 3.02112 0.030303 -0.02112
4000 1 1 1.310345 0.796671 -0.31034 0.203329

TOTALS 107 80 -3.89931 2.363617

Table 2.5: Table with expected values and a column with observed minus expected values

When two or more KM curves are compared, the LogRank test statistic is formed using
the sum of the difference between the observed values and the expected values calculated in
the table 2.5. In this example, this sum is −3.89931 for group 1 and 2.363617 for group 2.
We will use the value of group 2 to perform the test.

The Log-rank statistic is computed by dividing the square of the observed minus ex-
pected values of one group by the variance of the substraction of both groups. The equation
is show in 2.15. The variance is calculated with the following equation 2.16.

Log − rank =
(O2 − E2)2

V ar(O2 − E2)
, (2.15)

V ar(Oi − Ei) =
∑ n1fn2f (m1f +m2f )(n1f + n2f −m1f −m2f )

(n1f + n2f )2(n1f + n2f − 1)
. (2.16)

This test has the null hypothesis that there is no difference between the two survival
curves. Under this null hypothesis, the log-rank statistic is approximately chi-square with a
degree of freedom. Therefore, a P value for the log-rank test is determined from tables of the
chi-square distribution.
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2.4 Cox Model

This strategy is one of the best-known models for analyzing failure time regression data [11]
and it is the most commonly used mathematical modeling technique for estimating survival
curves when considering some descriptive variables simultaneously [57, 18]. The Cox Pro-
portional Hazards (CoxPH) was described by Cox in 1972 [24]. CoxPH is essentially a regres-
sion model commonly used in the statistical area of medical research to find the association
between patient survival time and one or more predictor variables, also allowing the estima-
tion of the hazard (risk) of an event for an individual or prognostic variable [11, 114]. Using
CoxPH’s main objective is to evaluate the simultaneous effect of several characteristics on the
survival of an object against an event. In other words, it allows us to examine how specific
factors influence the event rate (e.g. surgery, death, change of medical condition) at a specific
time t. This rate is commonly known as the risk rate, already defined in the previous section
2.2. The Cox model is expressed by the danger function denoted by h(t). This function is
interpreted as the risk of the event occurring at time t 2.17.

h(t) = h0(t)× eβ1x1+β2x2+···+βpxp , (2.17)

where the hazard function, denoted as h(t), is dependent on a set of p covariates (x1, x2,
... , xp), whose impact is measured by the size of the coefficients represented by the letter β
(β1, β2, ..., βp). The coefficients give the proportional change that is found in the covariates.
The term h0(t) is called the baseline hazard and is the value of the hazard function if all the
xi are equal to zero, which causes that the exponential 1; now the value h(t) = h0(t) that is
why it is called baseline function. This function is an unspecified function which makes the
Cox model semiparametric [57]. Cox is considered and also called the proportional hazards
model, because it assumes that the hazard of the event is constant, i.e. the hazard will remain
in the time. If some patient has a risk of event two times greater than another patient, that
proportion will remain two times grater in all the times later. This assumption is considered in
the equation 2.17, on which the baseline hazard h0(t) does not involve any covariate and the
second term in the exponential expression does not involve the time t [57]. The coefficients β
are estimated by Maximum Likelihood [11, 98].

Hazard Ratio The Cox Model also gives more information about each covariate, one of
them is hazard ration HR. HR is given by: eβii[0 · · · p], gives an estimated hazard ratio (HR)
for the effect of each variable adjusted for the other variables in a model. A value of bi greater
than zero will produce an HR greater than one, this result indicates that as the value of the
ith covariate increases the risk increases and the event time decreases. In the opposite case,
a value of bi less than zero produces an HR less than one, which means that the covariate is
inversely related to risk.

β = 0 HR = 1 No effect
β < 0 HR < 1 Reduces h(t)
β > 0 HR > 1 Increase h(t)

Table 2.6: HR value and β coefficient effect in the Hazard ratio function
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Finally, it is important to understand why the Cox model is so important and why it
is so commonly used. A key reason for the popularity of the Cox model is that, although
the baseline hazard h0 is not specified, the estimations that can be obtained, based on the
regression coefficients, are quite good and allow to generate interest risk indexes together
with Survival curves adjusted for a wide variety of data situations. In other words, the Cox
PH model is a robust model, so the results of the use of the model will approximate the results
for the correct parametric model [57].

2.5 Statistical Learning and Machine Learning Methods
Statistical Learning (SL) and Machine learning (ML) approaches have solved the issues of
regularization and subset selection. Embedded statistical learning like L1 regularization via
LASSO, allows the exploration of multivariate models composed on hundreds of features
[98]. On the other hand, subset-selection allows the exploration of realizable Cox models
from hundreds of features [117]. Model selection via the Bootstrap Step-Wise Model selec-
tion (BSWiMS), and Best Subset Selection (BeSS) are among two of the machine learning
options readily available to researchers Statistical Learning (SL) and Machine learning (ML)
approaches have solved the issues of regularization and subset selection. Embedded statisti-
cal learning like L1 regularization via LASSO, allows the exploration of multivariate models
composed on hundreds of features [98]. On the other hand, subset-selection allows the ex-
ploration of realizable Cox models from hundreds of features [117]. Model selection via
the Bootstrap Step-Wise Model selection (BSWiMS), and Best Subset Selection (BeSS) are
among two of the machine learning options readily available to researchers

2.5.1 FRESA.CAD
The first R package available to use is Feature Selection Algorithms for Computer Aided
Diagnosis (FRESA.CAD). It is available in the Comprehensive R Archive Network (CRAN)
https://CRAN.R-project.org/package=FRESA.CAD. The main objective of this
tool is to help scientists in the health-related area. Specifically, it was designed to find fea-
tures not described or to build practical models for computer-aided diagnosis, hoping that the
information found by this tool will be supportive of decision-making in the medical area. The
package contains methods for data conditioning, data exploration, univariate filters, model
building, model diagnostics and model visualization.

BSWiMS

Bootstrapped Stage-wise Model Selection (BSWiMS). BSWiMS is part of the FRESA.CAD
package in the programming language R. It is a supervised model selection method that aims
to select the best possible statistical model that predicts a user-specified result. In the case of
this investigation, a survival result. The statistical model is constructed by packaging a set of
Cox models created by the unique set of statistically significant characteristics in terms of the
model [105]. Specifically, the statistical model is constructed by packaging a set of compact
linear models (model nuggets), where each model nugget is constructed using a unique set of
statistically significant characteristics at the model level.
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The workflow of the BSWiMS algorithm is divided into sections. As the author pro-
posed BSWiMS is divided into 5 main stages: Univariate Filter, Bootstrapped Forward Selec-
tion, Frequency-based Forward Selection, Bootstrapped Backwards Elimination and Model
Bagging. Each stage of the process is designed to select features that are statistically relevant
in explaining the desired outcome while trying to keep the false discovery rate (FDR) at the
desired level. The summary of this process is detailed in Figure 2.3

1. In the first stage the BSWiMS strategy univariate filters the covariates. It computes
the univariate association of each feature to the outcome and by using the Benjamini-
Hochberg procedure [13] it selects features that are above the desired q-value to build
the models.

2. The second stage uses the user input B (number of bootstrap samples) to build a set
of B linear models using a forward selection procedure. Each model tries to add more
significant features until there is no more improvement.

3. The third stage is the frequency-based forward selection. To generate a single model
from a set of formulas generated in the previous phase, the characteristics of boot-
strapped models are ordered by the selected frequency. The forward model is built by
stepwise adding the ordered features if the p-value is statistically significant.

4. The fourth stage stands for backward elimination. It uses bootstrapping in the forward
model and analyzes the bootstrap distribution of each model feature. If the largest test
or train p-value is not significant for a term of the formulae then the feature is removed
from the model. The model that results from backward elimination is a compact linear
model; Therefore, a nugget-model. All the terms of this model are statistically signif-
icant i.e each feature used in the nugget-model adds unique information, which is not
redundant with the other features and each term is necessary to improve the model in a
statistically significant way. Once this process is finished, the procedures from step two
to the fourth are repeated, until no more models can be found or the test performance of
the last model is lower than the first aggregate model.

5. The fifth stage is responsible for grouping (bagging) all the models found in a single
statistical model. Bagging consists of taking the performance-weighted average of the
coefficients of the nugget-model. The final result of this process is a bagged model that
is the conclusion of BSWiMS procedure

The main characteristic of a BSWiMS model is that each of the characteristics selected
in the final model is described from the average nugget-fitted fitness statistics and the feature
selection frequency [104].

2.5.2 GLMNET
The second R package that we will use and where the LASSO, RIDGE and ELASTICNET
strategies rely on is Regularized Generalized Linear Models (GLMNET), which is available
in CRAN at https://CRAN.R-project.org/package=glmnet. GLMNET is a
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package that aims to provide the tools to adjust a generalized linear model through penal-
ized maximum likelihood. Inside of this package exists the implementation of the Penalized
Cox Regression (CoxNet) that can be explored with different parameters and turned into three
different algorithms. [98].

Coxnet

Coxnet is the function belonging to the GLMNET package that makes use of a Cox model
regularized by an elastic net penalty. Choose a small number of covariates to build an appro-
priate model. In this case, the strategy can be divided into two sections, the main algorithm
which tries to find beta coefficients by employing a cyclical coordinate descent, and the cross-
validation section which tries to find the optimal λ value to use in the regularization.

The cyclical coordinate descent considers the normal survival framework, described in
the last section 2.4 and tries to find the β coefficients which maximize the partial likelihood
function. By scaling the log-partial likelihood by a factor of 2/n and restricting it with the
elastic net penalty the problem becomes [98]:

β̂ = argmaxβ
[

2
n

(∑m
i=1 x

T
j(i)β − log(

∑
j∈Ri

ex
T
j β)
)
− λPa(β)

]
,

λPa(β) = λ
(
α
∑p

i=1 |βi|+
1
2
(1− α)

∑p
i=1 β

2
i

)
,

(2.18)

λPa(β) is the elastic net penalty which is a mixture of L1 Lasso [114] and L2 Ridge
regression [48]. The main advantage of using elastic net comes by combining the robustness
of the two strategies where lasso ignores the correlated predictors only by selecting one of
them; and on the other hand, ridge regression finds a coefficient greater than zero for all
predictors and gives equal weight to the correlated predictors. If the value of alpha is closer
to one the algorithm tends to behave as lasso but only removing the extreme correlations.
Changing the value of alpha could lead to different behaviors of the coordinate descent. Alpha
value 1 will turn the algorithm into LASSO, α = 0 turn the algorithm into RIDGE regression
and values between 0-1 will behave as ELASTICNET

The algorithms follow the next steps:

1. Initializes k folds. By default GLMNET uses 10 folds and the worst case is n which
turn the CV process into leave-one-out cross-validation.

2. Initializes β̃ coefficients and η̃ = Xβ̃

3. Compute Hessian of log-partial likelihood with respect of η̃ `′′(η̃) and the value of the
function z(η̃) which is defined by:

z(η̃) = η̃ − `′′(η̃)−1`′(η̃, ) (2.19)

`′(η̃) stands for gradient of the log-partial likelihood with respect of η̃

4. Find new β̃ by minimizing the function

1

n

n∑
i=1

w(η̃)i(z(η̃)i − xTi β)2 + λPα(β). (2.20)
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The diagonal of the Hessian with respect of η̃ is denoted as ω(η̃)

5. Update values of β̃ and recalculate η̃

6. Repeat steps from 2-4 until convergence of β

7. Find the λ value which maximizes the goodness of fit estimate, defined by the equation:

CVi(λ) = `(β−i(λ))− `−i(β−i(λ)), (2.21)

`−i is the log-partial likelihood without the test part of the CV, and β−i(λ) is the optimal
β in the train process found by maximizing `−i + λ ‖β‖1. Repeat the process form 1-5
with different lambda values until all the folds are used.

The algorithm of the cyclical coordinate descent section and the cross-validation section
is summarized in the figure 2.4.

2.5.3 BeSS
BeSS (Best subset selection) is an R package available from the CRAN at https://cran.
r-project.org/package=BeSS for Best Subset selection in linear, logistic and CoxPH
models [117]. This strategy takes into consideration the subset selection problem which in
simple words means the selection of a set with k out of p predictors. The number of possible
combinations turns the problem into NP-hard combinatorial optimization problem.

BeSS tries to solve this problem with the Primal-dual formulation of the problem. The
best subset selection problem with size k turns into the following optimization problem.

min
β∈R

l(β) s.t. ||β||0 = k, (2.22)

where the loss function l(β) is a convex function. In the case of CoxPH regression, that
is the regression that we are going to use, the loss function is the partial likelihood. BeSS uses
Newton-Raphson algorithm to estimate the values with the predictors in the active set. Like
GLMNET, BeSS also replace the hessian matrix with its diagonal, reducing the computational
complexity.

The BeSS package proposed an Active set Algorithm to solve the problem and they
named it Primal-dual active set (PDAS). The best subset problem define an Active set A with
k elements and its complement I with p − k elements. For a detailed description of the
algorithm look at [117]. The determination of the optimal k is other problem to be solved.
To confront that, BeSS proposed two strategies, the first one uses a sequential procedure and
takes its name from that, Sequential primal-dual active set (SPDAS). This algorithm specifies
the maximum value of k and iterates from 0 to k in the PDAS algorithm. Then, select the
optimal k by comparing the model with the minimum Akaike information criterion (AIC) [3],
Bayesian information criterion (BIC) [97] or Extended Bayesian information criterion (EBIC)
[22]. And the second procedure is the Golden section primal-dual active set (GPDAS) which
is created to avoid to run the PDAS algorithm extensively for a whole sequential list 0 → k;
the detailed explanation of this algorithm is in [117].
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2.6 Model evaluation metrics
Once described the methods of machine learning and statistical learning that will be used,
it is necessary to take into account which set of metrics will be used to be able to compare
the models in a fair and adequate way. The word metric can be used in different contexts.
However, in almost all of them, it is used to measure something with a specific unit. For this
reason, metrics that have been accepted and tested in the literature will be taken into account
in this Thesis. Two types of specific metrics will be taken into account to report, compare
and study the results of this investigation. First, the ability to predict event risk through
survival analysis with Cox regression; and second, the ability of the same model to classify
the individuals that belong to the study. For the comparison of survival analysis, the Log-
Rank Test, concordance index (c-index) metrics will be described and for the classification
comparison the Receiver operating characteristic (ROC), Accuracy (ACC), Sensitivity (SEN),
and Specificity (SPE) will be described. The first metrics are aimed at evaluating survival
methods, which in the end are those that allow to build disease predictions. On the other
hand, we will use the same models to be able to find patients with low and high risk although
the main objective of this technique is not classification, with the aim of being able to compare
these models with others found in the literature.

2.6.1 Jaccard Index
The Jaccard index allows us to compute the average similarity between the selected features. It
is also known as Intersection on the Union and the Jaccard similarity coefficient was described
by Paul Jaccard [51]. Jaccard index is a statistic used to measure the similarity and diversity
between the selected samples of a set. It is defined as the size of the intersection divided by
the joint size of the sample sets. The equation 2.23 illustrates the formula used to calculate it.

J = 2
(R2−2R)

R∑
i=(j+1)

R−1∑
j=1

|Ai∩Aj |
|Ai∪Aj | , (2.23)

where R is the number of elements that are part of the test set, and Aj is the set of the k
selected features for of the j holdout training sample. The range of the index varies from 0 to
1, where 1 represents that the feature selection method always selects the same set of features
on each repetition.

2.6.2 Concordance index
Within the literature it has not been possible to find a standardized metric to compare survival
models that use a multivariate cox regression. However, it is well known that one of the most
popular techniques for evaluating these methods is the Concordance Index (c-index) [89]. The
concordance index, also known as c-index or its acronym CI, is one of the most commonly
used performance measures of survival models. It is the probability of concordance between
the predicted and the observed survival [89]. You can write through the following formula

c(D,G, f) =
1

|ε|
∑
εij

1f(xi)<f(xj), (2.24)
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where D is the training data, G is the graph of survival function, f us the function. G
is composed by V vertex and ε edges. With the indicator function 1a<b, and 0 otherwise; ε
denotes the number of edges in the order graph. f(xi) is the predicted survival time for the
subject i by the model f . Is because of this reason that, the concordance index can also be
written explicitly as:

c =
1

|ε|
∑

Tiuncensored

∑
Tj>Ti

1f(xi)<f(xj). (2.25)

This index is a generalization of the area under the receiver operating characteristic
curve to regression problems, since it can be applied to the variables of continuous output
and consider the censorship of the data. Similar to the case of the area under the curve, the
concordance index c = 1 indicates perfect prediction accuracy and c = 0.5 is as good as a
random predictor [89].

2.6.3 Log Rank
This metric was already described in the section of survival analysis. Even so, we will try
to summarize how to calculate this metric and what the objective is when evaluating these
models in this way. Log-rank test is a long subset of chi-square tests that provides, through
the test criteria, an overall comparison of the KM curves [68]. The method makes use of
the observed data against the expected values in the counts on the outcome categories. The
Log-rank statistic is computed by dividing the square of the observed minus expected values
of one group by the variance of the substraction of both groups. The equation is show in 2.26.
The variance is calculated with the following equation 2.27.

Log − rank =
(O2 − E2)2

V ar(O2 − E2)
, (2.26)

V ar(Oi − Ei) =
∑ n1fn2f (m1f +m2f )(n1f + n2f −m1f −m2f )

(n1f + n2f )2(n1f + n2f − 1)
. (2.27)

2.6.4 Classification results
Before defining the metrics to be used for the classification section, it is necessary to define
the different types of results that we can have when predicting an outcome. The use of four
words is essential when classifying an object and knowing what the result was. These words
are true or false and positive or negative. True or false, refers to whether the classification
assigned by the model is correct or not. On the other hand, positive or negative, refers to the
assignment of one class or another.

Considering the ADNI data that will be used in this study, we can find patients who have
the conversion status between MCI to AD. If the conversion exists (status=1), it can be said
that the result is positive (P) and otherwise it is negative (N) (status=0). Using this table Table
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2.7, we can define the combinations that will be the possible results of our classifier. The
definitions will be stated in the survival analysis context.

# RID Time to event Status APOE

1 4 1106 0 0
2 33 1127 0 0
3 38 357 0 0
4 42 364 1 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

256 5007 741 0 0
257 5066 1104 0 1

Table 2.7: ADNI/TADPOLE data of male patients that will be used on one of this experi-
ments of this thesis. Time to event is in days, status=1 represents that the patient suffered the
conversion of MCI to AD

The first case occurs when the classifier identifies a patient has uncensored survival
information as someone who will undergo the conversion, and in fact, the said event hap-
pened; This case is known as True-Positive (TP) (correctly identified). In the second case
of False-Positive (FP) (incorrectly identified), patients who did not have conversion, that is,
who maintain MCI, have been identified as patients who will suffer from AD. The next case
is True-Negative (TN) (correctly rejected) which is people with censored time to event that
was identified as not converters. Lastly, False-Negative (FN) (incorrectly rejected) that refers
to patients that were incorrectly identified as not converters and they suffered the evolution
between MCI and AD, namely the patient was uncensored.

TP =
∣∣∣(f̃ ≥ 0

)
∩ uncensored

∣∣∣ , (2.28)

TN =
∣∣∣(f̃ < 0

)
∩ censored

∣∣∣ . (2.29)

Confusion matrix

Considering a group with positive instances and negative instances of some condition. The
four results can be formulated in a 2× 2 contingency table or confusion matrix. Also known
as an error matrix, it is a specific table layout that allows the display of the performance of a
classifier. Each row of the matrix represents the instances with its predicted class, while each
column represents the instances in a real class. It is a special type of contingency table, with
two dimensions one real and one prediction [100].

In context of this thesis we will be using the confusion matrix provided by the plotROC
function of the FRESA.CAD package [104]. The confusion matrix as shown in the Figure 2.5
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is a graphical representation of the number of cases that belong to each group. The size of the
rectangle is determined by the number of cases in each group. The first rectangle, in the upper
left, represents the True-Positives results. The upper right rectangle stands for the False-
Positives. Then, the following rectangle (down left) is the region of the False-Negatives; and
lastly, the representation of True-Negatives.

2.6.5 Accuracy
In simple words, we can refer to the Accuracy (ACC) to the fraction of correct cases [73]. In
other words it is the proximity degree of the estimated measurements versus the actual value
of that same measurement [16]. This term is linked to the term precision, which refers to
the degree to which repeated measurements with equal conditions return to have the same
result [16, 107]. Accuracy can be applied to any type of measurement, but in the case of
this investigation we will apply the term accuracy as a statistical measure to evaluate the
performance of classifiers. In this context, we can refer to accuracy as the proportion of
true results (both TP an TN) among the total number of studied cases [73]. The formula for
calculating accuracy in binary classification is shown in the equation 2.30 and the formula for
precision in the same context is shown in 2.31

ACC =
TP + TN

TP + TN + FP + FN
=

TP + TN

Total population
, (2.30)

Precision =
TP

TP + FP
. (2.31)

Although accuracy provides a simple way to compare the classification or measurement
performances, its simplicity often allows too many interpretations; that is why it should be
interpreted with considerable caution. These limitations force us to add complexity to our
evaluation scheme. To do this, we will use complementary metrics that will give more infor-
mation about performance and help us draw more relevant conclusions.

2.6.6 Sensitivity and Specificity
To face accuracy limitations, there are other metrics that give more information about the
performance of the classification model. To describe these terms in simple words, Sensitivity
(SEN) and Specificity (SPE) represent two kinds of accuracy; SEN is the accuracy for the
positive cases and SPE for negative cases [73]. However, they go far beyond these simple
words. Each measurement has its specific objective and its way of quantifying. Sensitivity and
specificity are proportions, so confidence intervals can be calculated using standard methods
of calculating intervals for proportions.

Sensitivity is a statistical measure that measures the performance of a binary classification
test, better known as classification, in the statistical context. This term is widely used in the
medical area and it refers to the proportion of true positives that were correctly identified
in the test [5, 17]. It is also known as the true-positive rate (TPR), recall or probability of
detection in machine learning. As was aforementioned, the probability is calculated by the
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use of true-positive results that are the correct predictions of the presence of a condition. The
formula goes as follows:

SEN =
TP

TP + FN
=

TP

Observed positives
. (2.32)

Although it would seem that the important thing is to have a complete sensitivity test,
you have to be careful with a SEN = 100%. Although this can happen and be successful, it
can also be a mistake because it does not take false positives into account and it can happen
that a test generates 100% correct results, but also a 100% False positive rate (FPR).

Specificity is the the true proportion contrary to sensitivity. It is also known as the true-
negative rate (TNR) and it refers to the true negatives that are correctly identified by the test.
It can be calculated as shown in the equation 2.33

SPE =
TN

TN + FP
=

TN

Observed negatives
. (2.33)

This measure helps to calculate the false-positive rate also known as the fall-out or prob-
ability of false alarm. It can be calculated as (1− SPECIFICITY ).

2.6.7 Receiver operating characteristic

SEN and SPE, in addition to confronting the limitations of accuracy, allow us to obtain the
Receiver operating characteristic (ROC). ROC Curve is basically an illustration that shows
the diagnostic capability of a binary classifier system as its discrimination threshold varies.
It is created by plotting the true positive rate (TPR) or sensitivity against the false positive
rate (FPR) calculated with SPE, at various threshold settings [73]. ROC analysis is used as a
tool to select the optimal models and discard those that are not. Regardless of specifying the
context of class distribution.

FPR and TPR define the space of the illustration ROC SEN is used on the x axis and
TPR on the y axis, respectively. This represents a cost-benefit comparison between TP results
with lower number of RPF. The best possible prediction method would produce a point in the
upper left corner or coordinate (0.1) of the ROC space, which represents 100% sensitivity (no
false negatives) and 100% specificity (no false positives). Point (0,1) is also called perfect
classification, which is not normal in the real world. Within the representation, there is a diag-
onal that divides the ROC space. The points above the diagonal represent good classification
results; The points below the line represent bad results [34].
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Figure 2.6: ROC Curve ploted by FRESA.CAD R package with some data classification
analysis

2.7 Validation

2.7.1 Cross-Validation
There are model validation techniques, which allow evaluating how the results of a statistical
analysis will be generalized to an independent data set, different from those used to generate
the model, one of them, is the Cross-Validation (CV) [60, 75, 19]. The objective of a CV is to
test the ability of the selected model to predict new data that was not used to estimate them, to
avoid problems in the model such as overfitting or selection bias. To test the model with new
data, a cross-validation iteration divides the data sample into complementary subsets. The
analysis is divided into two, using the training subset first and validating the analysis in the
other test set subset. The process is repeated on several occasions, making different partitions
in each iteration, to eliminate the variability. Once the validation results have been calculated
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with the test sets, there are methods to combine them, for example, the average. There are
several two types of cross-validation, exhaustive and non-exhaustive cross-validation.

Exhaustive Cross-validation The first of the types of cross-validation makes use of all
possible ways to divide the original sample into a test and validation set. Depending on the
amount of data, the number of combinations grows by leaps and bounds. This method allows
configuring the number of elements p that will be used to test the model, the name of the
method is Leave-p-out Cross-Validation, the rest of the observations will belong to the train
set. So the strategy will be repeated until on all the possible ways to divide the data into a set
of p observations are used as a training set.

Non-exhaustive Cross-Validation Non-exhaustive cross-validation methods do not com-
pute all the possible combinations of splitting the original sample.

There are different ways to divide the data for cross-validation. One of them takes into
account the proportions of classes within the observations. That is to say, the CV uses the
process of rearranging the data to ensure each set of data has a good proportion of the whole.
For example, in a binary classification problem, it tries to select the same proportion of both
classes in the sets [60].

2.7.2 Leave-one-out Cross-Validation

Leave-one-out Cross-Validation (LOOCV) is a special case of Leave-p-out Cross-Validation
where p = 1. Just one observation is left to the validation set and all the n − 1 observations
are part of the training set. Choosing p = 1 allows the computational time required to find
all combinations to be shorter. The advantage of this method lies in its simplicity and the
strategy of using all observations as well as tests or training. In some cases, although this type
of cross-validation is much easier computationally, n remains a very large number.

Algorithm 1 Leave-one-out Cross-Validation algorithm
1: procedure LOOCV(Data)
2: Error ← 0
3: N ← Rows(Data)
4: for i← 1, n do
5: Test← Data[i, :]
6: Training ← Data[−i, :]
7: fit← Fit(Training)
8: Error ← Error + fit.validate(Test)
9: end for

10: Error = Error/N
11: end procedure
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2.7.3 k-fold Cross-Validation

This method is part of the Non-exhaustive type of cross-validation. In this strategy, the original
sample is randomly divided into k subsamples of equal size. Of these k subsampled sets, a
single subsample is taken for the validation stage and the following k − 1 remaining sets are
used as training data. The process concludes when each of the k sets have been used as test
sets, in total k repetitions.

The advantage of this method lies in the use of all observations for training and valida-
tion. This happens because the k sets are maintained during all iterations and only the test set
changes. In literature, it is common to find cross-validation 10 [71], but in general, k remains
as a non-fixed parameter. If k is equal to the number of observations n, the cross-validation
of k is exactly the cross-validation of leave-one-out [46].

Algorithm 2 k-fold Cross-Validation algorithm
1: procedure KFOLDCV(Data)
2: Error ← 0
3: N ← Rows(Data)¡
4: SampleSize← dN/Ke
5: Samples← RandomSplit(Data, SampleSize)
6: for i← 1, k do
7: Test← Samples[i]
8: Training ← Samples[−i]
9: fit← Fit(Training)

10: Error ← Error + fit.validate(Test)
11: end for
12: Error = Error/N
13: end procedure

2.7.4 Holdout and Repeated Holdout CV

This method Holdout Cross-Validation (HOCV) is considered as the simplest form of cross-
validation. In the method, a set of observations are randomly selected to form two sets called
test set and training set, respectively. Although the method does not have determined the
amount belonging to each set; However, the most normal is that the test set is smaller than the
training set [60, 9].

On the other side, Repeated Holdout Cross-Validation (RHOCV) creates r random divi-
sions of the data set to divide them between training and validation data with a given fraction
[88]. It is also known as Monte Carlo CV [31]. For each training set, a model is generated
that is valid with the respective test set, the final result is calculated with the average of each
of the validations performed on the test set. The advantage of this method lies in the constant
number of sets that are formed, regardless of the number k used in k-fold. On the other hand,
the disadvantage of this method is that some observations can never be selected in the valida-
tion subsample, while others can be selected more than once. However, this disadvantage can
be treated with the number of repetitions of the method.
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Algorithm 3 Repeated Holdout Cross-Validation algorithm
1: procedure RHOCV(Data,Repetitions,TrainFraction)
2: Error ← 0
3: N ← Rows(Data)¡
4: for i← 1, Repetitions do
5: TrainSize← dN ∗ TrainFractione
6: TestSize← dN ∗ (1− TrainFraction)e
7: Test← RandomSample(Data, TestSize)
8: Training ← RandomSample(Data, TrainSize)
9: fit← Fit(Training)

10: Error ← Error + fit.validate(Test)
11: end for
12: Error = Error/N
13: end procedure

2.8 Summary
This chapter details all the theory necessary for the compression of the methods that will be
detailed in the next chapter. Regarding the main objective of this thesis, which is the eval-
uation of different machine learning techniques for the study of survival in different chronic
degenerative diseases; it was defined which are the diseases with which, the implementation
of code will be tested for fulfilling the objective of the thesis. Therefore, first in this chapter,
we found the details of the problem for the three chronic degenerative diseases to be treated.

2.8.1 Chronic-degenerative disease
The first chronic-degenerative disease to be part of this study is the most common type of
cancer in women, breast cancer. This cancer affects approximately 10% of the female popula-
tion. The commonly used radiological images, mammograms; are chosen to make an accurate
diagnosis and therefore they might be helpful for prognosis prediction. The second disease to
study is Osteoarthritis. It is a degenerative joint disease and one of the most common chronic
degenerative diseases. It takes importance because of its big incidence throughout the world.
To make a correct diagnosis of the disease, many doctors make use of various methods and
tests on patients; including data from his past, physical examination, laboratory tests, and
x-rays. The third and last disease to study is the syndrome that generates deterioration in
cognitive function, Dementia, specifically dementia caused by Alzheimer’s disease. AD is the
most common form of dementia and can contribute to 60-70% of cases. It has no current cure
yet and the efforts to improve current treatments or seek new solutions have not been stopped.
Later this chapter explains the main statistical tool used in this thesis, Survival analysis. It is
a statistical analysis that let analyze the expected duration of time until an event happens and
this time it will be the power that supports all the machine learning techniques. The prob-
ability that the subject will survive in the given time is given by the Survival Function S(t).
The time is delimited by the observation time. If a subject does not have an event during that
observation time, they are described as censored, and its survival information is censored. The
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immediate potential per unit time for the event to occur, given that the person or object has
already survived the time t is given by the hazard function h(t). Depending on the hazard
function complexity, different survival models could be constructed. If the h(t) is constant,
then the survival model is exponential. If the hazard function increases over time, the model
will be an increasing Weibull model

2.8.2 Survival analysis

Next, inside this chapter is shown some survival analysis tools, such as Kaplan Meier curves,
LogRank Test and the Cox Model. The Kaplan–Meier (KM) estimator is also known as
the product-limit estimator (PL estimator), it is a non-parametric statistic used to estimate
the survival function from the collection of the life data of a particular object. To evaluate
when two KM curves (described above) are statistically equivalent or not, the Log-rank Test
metric is used. Conversely, the Log-rank test is a long subset of chi-square tests that provides,
through the test criteria, an overall comparison of the KM curves. The Log-rank statistic
is computed by dividing the square of the observed minus expected values of one group by
the variance of the subtraction of both groups. The equation is show in Log − rank =

(O2−E2)2

V ar(O2−E2)
. One of the most important survival models parts of the exponential family is

the Cox Model. CoxPH is essentially a regression model commonly used in the statistical
area of medical research to find the association between patient survival time and one or
more predictor variables, also allowing the estimation of the hazard (risk) of an event for an
individual or prognostic variable. The Cox model is expressed by the danger function denoted
by h(t) = h0(t)× eβ1x1+β2x2+···+βpxp

2.8.3 Machine Learning techniques

Finally, machine learning techniques to be used are introduced. Statistical Learning (SL) and
Machine learning (ML) approaches have solved the issues of regularization and subset selec-
tion. The first R package available to use is Feature Selection Algorithms for Computer-Aided
Diagnosis (FRESA.CAD). The principal algorithm to be used in this thesis is the Bootstrapped
Stage-wise Model Selection (BSWiMS). It is a supervised model selection method that aims
to select the best possible statistical model that predicts a user-specified result.

The second R package that we will use and where the LASSO, RIDGE and ELAS-
TICNET strategies rely on is Regularized Generalized Linear Models (GLMNET). Inside
GLMNET the principal algorithm is Coxnet which is the function that makes use of a Cox
model regularized by an elastic net penalty. It chooses a small number of covariates to build
an appropriate model and depending on the parameter α value, the algorithm can turn into
different strategies.

The third package is BeSS (Best subset selection). This strategy takes into considera-
tion the subset selection problem which in simple words means the selection of a set with k
out of p predictors. The number of possible combinations turns the problem into an NP-hard
combinatorial optimization problem. BeSS tries to solve this problem with the Primal-dual
formulation of the problem. The package has two main algorithms GSPDAS (default param-
eters) and SPDAS with GIC.
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2.8.4 Metrics

Finally, in this chapter we take into account which set of metrics will be used to be able to
compare the models in a fair and adequate way. We divided the metrics into two types, the
survival status, and the classification stats.

On the survival metrics side, We use the Jaccard index which allows us to compute the
average similarity between the selected features. It is also known as Intersection on the Union
and the Jaccard similarity coefficient was described by Paul Jaccard. Then, the concordance
index, also known as c-index or its acronym CI, is one of the most commonly used perfor-
mance measures of survival models. It is the probability of concordance between the predicted
and the observed survival. Once again, the Log-rank test which is a long subset of chi-square
tests that provides, through the test criteria, an overall comparison of the KM curves. On the
classification stats, we can summarize all the metrics to be used in the Table 2.8 and Figure
2.7.

O(+) O(-)

T(+) TP FP ACC = TP+TN
Total population

T(-) FN TN PRECISION = TP
TP+FP

SEN = TP∑
O(+)

SPE = TN∑
O(−)

Table 2.8: Review

Some terms are really important. True-Positive (TP) means correctly identified). False-
Positive (FP) means incorrectly identified. True-Negative (TN) means correctly rejected and
False-Negative (FN) means incorrectly rejected. Accuracy refers to the fraction of the correct
cases in a classification test. Sensitivity and specificity are metrics that give more information
about the performance of the classification. SEN is the accuracy of the positive cases and SPE
for negative cases. SEN and SPE, in addition to confronting the limitations of accuracy, allow
us to obtain the Receiver operating characteristic (ROC). ROC Curve is basically an illus-
tration that shows the diagnostic capability of a binary classifier system as its discrimination
threshold varies.
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Figure 2.7: Confusion matrix ploted by FRESA.CAD R package in the ROC curve of random
classifier with some data

The validation techniques are part of the Cross-validation family. Repeated Holdout
Cross-Validation (RHOCV) creates r random divisions of the data set to divide them between
training and validation data with a given fraction.



2.8. SUMMARY 43

Figure 2.3: Stages of BSWiMS procedure based on Figure 2(a) in [104]
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Figure 2.4: Stages of Coxnet procedure



2.8. SUMMARY 45

Figure 2.5: Confusion matrix ploted by FRESA.CAD R package in the ROC curve of random
classifier with some data





Chapter 3

Methodology

The main purpose of this thesis is the evaluation of some different machine learning alterna-
tives for the analysis of survival characteristics of patients suffering from chronic degenerative
diseases. This analysis will be only possible with the information on time-to-event data along
with the clinical and personal characteristics that describe each subject, the machine learning
and statistical methods implemented, and the strategy of validation and benchmarking or the
strategies; things that will be described here. In the previous chapters, the scope of the thesis
was limited and the topics used to fulfill the mentioned objectives were taken into context.
Now is time to take into consideration all the materials and methods that will be implemented
to test our hypothesis. First of all, the data sets that will be used are described; With this, a
complete description of the characteristics of each of the sets, the explanation of the origin of
the data and the process of acquiring the imaging information of the observations in each of
the initiatives will be detailed. Two types of data will be used to test the methods.

The first of the types will be data created solely for this study. The simulated data, when
created with simulated information as absolute truth, are aimed at checking the operation of
the techniques and knowing how reliable the subsequent results will be. The second type
of information to be used will be clinical data of real patients suffering from Breast Can-
cer, Alzheimer’s disease and Osteoarthritis with data from the analysis of images used in the
normal process of diagnosis or treatment of the disease and clinical information. collected
from each subject. Consequently, all this information has to be processed and transformed for
use in the different computational techniques we are going to use in our analysis; This data
preparation process is the next section in this chapter.

Subsequently, and taking into account that the data is ready, we will describe the im-
plementation of the cross-validation process, in which the statistical analysis of survival of
the data sets through different machine learning methods was taken into account. The im-
plementation of various techniques requires the use of strategies that allow a fair comparison
between the methods. For this, the cross-validation technique that will be detailed in the 3.2.3
point was considered. As a consequence, this process generates a large amount of informa-
tion that in turn can be collected, analyzed and displayed graphically for better understanding.
This process is combined in a single method of comparison called: Cox Benchmarking. We
will contextualize the implementation of the comparative evaluation of Cox models, with the
description of the use of graphic functions and statistical calculations that will allow the fair
evaluation of the strategies. Finally, chapter 3 explains the objectives and the problem to be

47
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solved for each of the experiments with the different data sets. The process for obtaining the
results shown in the next chapter will be described.

3.1 Experiments: Data adquisition and preparation

Within the methodology of this research and after having placed into context all the topics nec-
essary to understand the study, the first phase to be carried out is the acquisition, preparation,
and analysis of the data to be used. In the next pages, we will detail each of the characteristics
of the data sets, their origin, their context, and their demography.

3.1.1 Simulation data
One of the best known and used methods to verify the operation of computational strategies
and statistical analysis is to make use of simulated data, where the author is the only one who
knows the absolute truth. In the context of this study, it is necessary to carry out a data set with
time-to-event information that is influenced to some extent by various variables that change
the risk of suffering the event. In our case, the data simulation will be carried out in the field of
basketball players who are about to start their professional careers. This theme was selected
simply by the author’s affinity and knowledge of this topic. The problem could be detailed as
below.

Basketball professional teams, especially NBA teams, have a very specific event known
as a draft. This special event is the place where a group of amateur players that have been
previously filtered as possible players in the league, can be selected to sign a professional
player contract. Each of the teams has access to the player’s historical information and also
their specific health data. That information is used to make a decision about whether the
player worth it or not. This process (although it is more complex in real life) tries to find
players that can be useful for the franchise and especially players that provide real results to
the team, economically and in the sport context. Of the players selected, there are players
that can last a long time in the organization, others that just retire some seasons after they
began. One of the main problems with selected players in the draft is the time they remain
in the league. Whether for sports, health or just that they do not meet the expectation, some
players stop playing professionally in the NBA. Taking this into account, we are going to
simulate historical information of 1000 players who have entered the league and relate their
characteristics before entering the league (amateur stats) with the time of their NBA careers.

Once we know the problem and what we need for this data simulation, we decided just
to use a small number of variables that have information about the players. These variables,
in the real-life, could be or not risk factors for the withdrawal time of the prospects. Here, the
characteristics were selected because of the ease of generating random numbers that follow a
predefined distribution function data. The data generated involves information from 1000 for-
mer players and some current players with their simulated data from their amateur experience.
The variables to use are detailed in the table 3.1 and the paragraphs below.

Eight of the ten features that will be part of this simulation follow a normal distribution
and the two remaining follow a binomial distribution. For the simulation of these data, aver-
ages and standard deviations were estimated by the author’s empirical knowledge and some
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Covariate Code Distribution Mean Standard deviation

Body Mass Index bmi Normal 24 2
Age age Normal 21 1.5

Games played games Normal 40 8
Average minutes minutes Normal 22 5

Assists AST Normal 5 2
Field goal percentage FGP Normal 35 3

Block per game BLK Normal 1.8 0.5
Offensive rating ORtg Normal 105 3
Defensive Rating DRtg Normal 100 3

Injuries I Binomial NA 0.5*
Surgeries S Binomial NA 0.5*

Table 3.1: Features to be related with the NBA careers of 1000 NBA players simulated infor-
mation. * the probability of success in binomial distribution

research about the players’ data before entering the draft. All the numbers were generated
with Excel specifically with the provided data analysis tool. The only input that the tool re-
quired was the mean and standard deviation for the first eight features, and the probability for
the remaining ones. Once these data have been generated, we can calculate the probability of
survival of each subject, based on the calculated risk coefficients that we will assign to each
variable according to our empirical knowledge and the simulated absolute truth. To calculate
the coefficients, the cox model will be used. In the model, each variable affects the Hazard
function with a different weight. Positive coefficients will mean that the effect size of that
specific covariate will make the risk growth and negative ones will decrease the value. The
Cox PH’s formula let to overcome to this calculation and a new equation was derived for the
calculation of the effect size (β) of each variable per unit of change of each feature. In this
formula, an initial risk value is considered with the first value of the variable and the second
risk value when the variable changes in the unit of change determined. The formula 3.1 details
the calculation of the covariates effect size.

βxi =
log[log(1− h0(xi1))− log(1− h0(xi2)]

xi2 − xi1
(3.1)

For each covariate, a different unit of change and added risk was considered. These data
were determined according to the simulated truth. In the following lines, the meaning of each
of the variables and the values used to calculate the risk coefficients will be detailed. These
effect sizes calculated when submitted to the cox model will let us know the probability of
survival of each subject and thus also the probability of occurrence of the event for each unit
of time selected.

We used Body max index (BMI) because it was the only way to use the height and the
weight of the players without the need to generate random variables related to each other.
The BMI is a person’s weight in kilograms divided by the square of height in meters [55].
In this variable, we consider that 1 unit of change would increase the risk by 0.9%. The
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Covariate xi H0(xi1) H0(xi2) xi2 − xi1 β Effect size

Body Mass Index 0.001 0.0011 1 0.041
Age 0.01 0.04 5 0.122

Games played 0.01 0.02 -51 -0.006
Average minutes 0.009 0.011 -35 -0.003

Assists 0.009 0.02 -10 -0.035
Field goal percentage 0.004 0.03 -20 -0.044

Block per game 0.001 0.035 -3 -0.517
Offensive rating 0.009 0.09 -20 -0.051
Defensive Rating 0.011 0.09 18 0.052

Injuries 0.005 0.05 1 1.010
Surgeries 0.005 0.15 1 1.511

Table 3.2: Features to be related with the NBA careers of 1000 NBA players simulated infor-
mation.

resulting coefficient for the BMI was β = 0.041414. The next features were age, which we
consider as an important variable to define the time the race can last. Each exchange unit is
defined as the five-year difference, which means that if the difference between the two players
is 5 years the risk of the major is 3% greater than that of the other; The calculated effect
size is β = 0.121743. The games that the player had in the season before his postulation
for the league, are described in the third variable. In this case, this variable has a negative
relationship, which means that the risk difference between the player with the most games
and the player with the minimum of games is 1% of the risk; the highest risk being that of the
player with the least amount of games. The number of games ended with a negative impact
measure of value β = −0.00595. The next feature is the average number of minutes each
applicant played in each game last season. This characteristic also has a negative association
where the 35 minutes difference represents a 0.2% risk change and its resulting coefficient
was β = −0.0025.

Then we take into account the average number of assists per game a player has. Like the
previous two, its relationship with the probability is also negative and the resulting coefficient
was -0.03492. The difference between a player with 0 assists and one with 10 is 1.1 %.
We continue with the percentage of successful shots, Field goal percentage (FGP) with a
coefficient of β = −0.04404 which refers to the difference of 2.6 % risk when the percentage
difference is 20 units. The following is the number of blocks per game (BPG), the resulting
coefficient is β = −0.51719. The difference of 3 blocks defines a 3.4% change in risk. The
last variable with a negative relationship with risk is the offensive rating of each player (ORtg).
This statistic gives us the amount of points that a player averages every 100 times he has the
ball in his hands. Within our simulation, we will consider this characteristic as an important
impact factor, so players with a difference of 20 points have an 8 % difference in risk, with a
resulting coefficient of β = −0.05092. Quite the contrary in the value of the effect size β =
0.051709, is the defensive rating of each player (DRtg). This rating is the amount of points
that a player allows per 100 possessions. The change of 18 points between players makes the
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risk increase 7.9 %. Finally, there are the two variables that will have more weight among
the simulated characteristics; First, there is the Injuries variable (I). The value 1 indicates that
the player has suffered from injuries that have left him relegated from the courts and 0 that
he could have had superficial injuries or not suffered them. This characteristic has a 4.5%
risk increase if you have suffered the injury and the calculated coefficient is β = 1.010003.
Second, there is the variable surgery (S), which with the value 1 indicates that the player
has suffered an injury surgery. This variable increases the risk by 14.5% and the measure of
impact is β = 1.510846.

A summary of the coefficients with the risk values considered for the calculations is
found in table 3.2. The first column shows the risk with the first value of the variable, the
second with the other variable value. The third column shows the difference of units between
the values considered for the risk. Finally, there is the value of the calculated coefficient.

3.1.2 TADPOLE/ADNI
Considering the great problem caused by one of the best known chronic degenerative dis-
eases, Alzheimer’s disease, different initiatives have been created around the world to be
able to control, diagnose and treat the disease. Many of these have allowed organizations or
groups of institutions to join their purpose and through economic and academic incentives,
to take advantage of all the information available in the initiatives. One of the most recent
and well received challenges in the context of this disease was the TADPOLE Challenge. The
Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge born to
compare different techniques to predict the future evolution of people at risk of Alzheimer’s
disease. All participants in this challenge were provided with historical data from patients be-
longing to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [69]. The challenge was
responsible for delivering a ADNI-derived set available via the Laboratory Of NeuroImaging:
LONI; With that, they eliminated the need for data preprocessing to join patient information
into a single spreadsheet.

ADNI data

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary objective of ADNI has been to test whether MRI, PET,
other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org. The initial objective of this
initiative was to recruit 800 subjects, however, its successful start and above all the support
of different organizations allowed the continuation of new protocols ADNIGO, ADNI-2, and
ADNI-3. Currently, and according to TADPOLE, the data set delivered with the first three
protocols have recruited more than 1500 adults, aged between 55 and 90 years. These people
participate in the research and mostly consist of cognitively normal people, people with early
or late MCI and people with early AD. ADNI provides its inclusion criteria in [84]. Data used
in the final spreadsheet provided by the TADPOLE Challenge has ADNI information about:
(1) CSF markers of amyloid-beta and tau deposition; (2) various imaging modalities such
as magnetic resonance imaging (MRI), positron emission tomography (PET) using several
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tracers: Fluorodeoxyglucose (FDG, hypometabolism), AV45 (amyloid), AV1451 (tau) as well
as diffusion tensor imaging (DTI); (3) cognitive assessments acquired in the presence of a
clinical expert; (4) genetic information such as alipoprotein E4 (APOE4) status extracted
from DNA samples; and (5) general demographic information.

Tadpole datasets

TADPOLE provides three types of datasets: (1) training data set which refers to the measure-
ments with associated outcomes that will be used to train the algorithms. (2) Prediction data
set that contains only baseline longitudinal measurements without associated outcomes. This
data is provided to be used as input to make the forecast process in the challenge. (3) Test data
set which contains the real outcomes of each patient to compare with the calculated forecast.
Regarding the two first types of the datasets, TADPOLE prepared three standard datasets:

• D1: TADPOLE Standard training set based on longitudinal data across ADNI1, ADNI
GO and ADNI2. The information is a set of measurements for every patient that at least
two separate visits (different dates) in the process. D1 contains information of 1667
patients.

• D2: TADPOLE longitudinal prediction set contains information from ADNI rollover
individuals whom data has to be used for the forecast in the challenge. D2 dataset
includes all the time related information of the patients. It contains information of 896
patients.

• D3: TADPOLE cross sectional prediction set contains the most recent time point and
a limited set of variables for each rollover patient in D2. D3 shows the information
typically available when selecting a cohort for a clinical trial.

In this thesis we will consider just D1 and D2 combined information. The process of the
material selection will be described later.

Image pre-processing

ADNI manages its own protocols for obtaining information from medical images. Imaging
information has been pre-processed with standard ADNI pipelines [124]. Specifically, for
these thesis we will concentrate in three-dimensional T1-weighted magnetic resonance imag-
ing which provides extensive information to develop and test analysis techniques to study
the conversion of MCI to AD. ADNI MRI Core created standardized analyzes that include
scans that meet the minimum quality control requirements, the dataset included correction for
nonlinearity of gradient, correction of non-uniformity B1 and sharpness of spikes [69]. Signif-
icant regional features such as volume and cortical thickness were extracted using Freesurfer
transverse and longitudinal pipelines [90].

APOE

There are some useful clinical information such as Apolipoprotein E (APOE), that is a pro-
tein involved in the metabolism of fats in the body with a polymorphic structure that has
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three major alleles [101]. The fourth allele (APOE4) had been validated several times as a
biomarker indicative of the risk of suffer Alzheimer’s disease [23]. Screening laboratories
were obtained as well as blood for DNA for APOE testing [84]. ADNI uses information of
APOE4 biomarker as APOE status that was treated as a categorical variable with three levels
(Noncarriers < Heterozygotes < Homozygotes) [113].

Figure 3.1: ADNI/TADPOLE (a) Patient selection process. (b) Feature types used in this
study.

Cognitive Assessments

Within the information available from ADNI. Data from neuropsychological tests to patients
are found. In this thesis they will be mentioned as Cognitive Assessments or test scores. The
objective of the ADNI neuropsychological tests is to make use of objective and reliable pro-
cedures to measure the cognitive abilities of a patient. There are several problems within the
tests that the examiner may encounter, the problems can be emotional and physical interfering
with the test results. To prevent this, the examiner must perform several tests while deter-
mining the patient’s condition. Protocols and guidelines indicated as the aforementioned, are
found in the ADNI data usage manual. These guidelines ensure in a certain way the gener-
ation of valid and accurate measurements with a minimum of stress and discomfort for the



54 CHAPTER 3. METHODOLOGY

participants.

Material

The ADNI/TADPOLE challenge datasets considered for this study were: “D1 - a comprehen-
sive longitudinal data set for training”, and “D2 - a comprehensive longitudinal data set on
rollover subjects for forecasting”. The challenge included 1737 individuals from the ADNI
database with longitudinal observations. Each subjects’ data included the diagnosis status,
neurocognitive evaluations, qMRI longitudinal observations, PET studies, APOE4 status [69].
For this study, we selected some features: sex, APOE4, 21 Test-scores and the 346 longitu-
dinal qMRI measurements provided by the University of California San Francisco (UCSF).
UCSF used FreeSurfer Version 4.4, for the analysis of the MRI data sets [90].

We divided the dataset into groups depending on their condition. First of all, the pro-
vided dataset had the information about all the patient’s visits. Since this investigation con-
siders the survival analysis, we are going to use the information of the baseline visit, which
is the first visit regarding this situation. The dataset included 864 MCI diagnosed subjects at
baseline. Of them, 431 MCI subjects did not have the structural qMRI data leaving just 442
MCI patients remaining with longitudinal qMRI. The 442 patient’s information at the base-
line were studied in this thesis. Among the studied subjects, just 187 patients demonstrated
MCI to AD conversion and 255 maintained the MCI diagnosis during the observation period.
Furthermore, we used normal control patients from the TADPOLE/D1-D2 dataset with qMRI
information (n=233) as reference controls. Figure 3.1 shows the selection process and the
main features considered in this paper. Table 3.3 shows the demographics of the three groups.

Sex
Mean age (s.d.) Mean Time-to-event (s.d.)

APOE*
M F 1 2 3

MCI to AD 107 80 73.41( 7.13) 848.56(678.96) 64 98 25
No Event 150 105 73.1(7.60) 1470.22(967.97) 149 81 25

Normal Control 113 120 74.58(5.27) NA 167 62 4

Table 3.3: Characteristics of tadpole challenge subjects used in this study. 187 patients pre-
sented the MCI to AD conversion event and 255 maintained the MCI diagnosis during the
observation period. The normal control patients (n=233) were used as reference controls.
APOE status (1: Noncarriers 2: Heterozygotes 3:Homozygotes)

Data conditioning

We extended the information provided by the TADPOLE Challenge by computing the time
to MCI-to-AD conversion. The event time for stable MCI subjects consisted of the difference
in days between the date of the baseline and the date of the last recorded follow-up visit.
The event time for subjects that suffer the MCI-to-AD conversion consisted of the difference
in days between the date of first AD diagnosis and the baseline date. MCI stable subjects
were labeled as censored. After computing the event time, we explored the 346 baseline-
qMRI measurements. 332 of these correspond to measures of the left and the right side of
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the same brain region. Because AD affects both sides of the brain, we described the left-right
paired measurements as the mean and absolute differences between them. After that, all the
measurements were z-normalized using the 233 normal subjects as reference controls. Finally,
qMRI features that were not measured in more than half of the subjects were removed (n=28).
After that, the non-reported values of the 314 qMRI features that had majority representation
were imputed by the nearest neighbor strategy [104]. A complete graphical summary of the
data conditioning process can be found in Figure 3.1(b). Figure 3.2 shows an overall heatmap
representation of the analyzed data.

Figure 3.2: Heat map with 301 features selected by all the Machine Learning Methods. On the
top section, patients dendrogram and 4 bars with the subjects’ information about conversion,
time to event, sex and APOE. On the left section, dendrogram of features and the information
about the type of feature. Subject identification x-axis, features on y-axis.

3.1.3 Osteoarthritis Initiative: OAI
Osteoarthritis (OA) is the most common form of arthritis; it causes considerable disability in
the elderly populations. Osteoarthritis does not have a consistent technique that can be used
for its early diagnosis and is more common than expected. In Mexico, the prevalence of os-
teoarthritis was 10.5% [82] and despite a high prevalence, there is no treatment or medication
that can cure it. And within this disease, when it attacks the knee it becomes the most com-
mon cause of disability in adults (CITA). The ”Osteoarthritis Initiative (OAI): a study of knee
health” is a multicenter, longitudinal, prospective observational study of knee osteoarthritis
that allows researchers to gather information about physical changes in the development of
the disease. This Initiative is a public-private partnership between the NIH and private indus-
try that seeks to develop a public domain. The main purpose of this study is to examine people
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who have knee arthritis or who have a high risk of knee arthritis; assessing biomarkers that
will give us more information to better understand how to prevent and treat OA. In this Thesis
will be using just part of the available information in OAI. Osteoarthritis Initiative has been
collecting large amounts of clinical data in patients with OA; Although all these characteristics
provide important information about the stages of pain and other characteristics of the subject,
we will concentrate on raw and derived X-ray measurements, demographic information, and
scores of standardized questionnaires. The study is comprised of three subgroups: 1) those
with clinically significant knee OA who are at risk of disease progression, 2) individuals who
are at high risk of developing clinically significant knee OA, and 3) a normal control group.

In the literature, considering the nature of the image itself, it is obvious the implication
of possible better results using Magnetic Resonance Imaging (MRI) than X-ray imaging to
study different outcomes in OAI. Nevertheless, some studies are not entirely complete, such
as the rate of incidence of Total knee replacement related to X-ray measurements. In the
baseline visit, Joint imaging biomarkers (magnetic resonance imaging and radiography) and
biochemical and genetic markers (from blood and urine) are collected, this section is concen-
trated in the radiographies. The OAI data gives us the necessary information to explore this
relationship and that is why we chose it.

X-rays acquisition

OAI owns a protocol for X-ray acquisition that considers all the requirements for participant
inclusion or the x-ray technologist and investigator roles. In our case, here, we are going to
explain how the baseline x-ray measurements were acquired. Depending on the cohort on
which each patient was classified, the schedule of the radiographic examination was set. The
radiographs acquired for a participant will differ depending on their sub-cohort assignment
and visit. Some of the patients due to the lack of quality in the radiographs taken could need a
procedure of repeated exam. Following the standard radiology process, each study center uses
a single x-ray unit for each acquisition protocol to avoid variability in the data. Measurements
were extracted from those radiographs with different techniques. All the quantitative data
set contains measurements of longitudinal center joint space width and related parameters of
serial OAI knee x-rays were performed in the laboratory of Dr. Jeff Duryea at Brigham and
Women’s Hospital in Boston, MA [32].

These measures are taken directly on the x-ray image, and are presented in millimeters,
because of this is considered quantitative scores.

On the other hand, the semi-quantitative dataset contains the readings for the central
longitudinal cohort of serial Entire OAI knee x-rays. These measurements were extracted at
the Boston University Clinical Epidemiology Research and Training Unit, under the direction
of Dr. David Felson, MD. [35]. These measures are taken directly from the x-ray image;
the image is compared with an atlas, and is scored from 0 to 3, where 0 is no evidence of
radiological OA.

WOMAC

Besides the use of imaging features within this dataset, we use also add one on of the most
important assessments for the OA screening, the Western Ontario and McMaster Universi-
ties Arthritis Index (WOMAC). The WOMAC is a widely used evaluation of Hip and Knee
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Figure 3.3: Summary of the selection of Participants for the OAI experiment and data con-
ditioning process. (a) Participants selection (b) Feature types and data conditioning process.
*Absolute difference of X-ray measurements

Osteoarthritis. It is a self-administered questionnaire which consists in 24 items divided into
3 sections. It was developed in 1982 at Western Ontario and McMaster Universities and is
available in over 65 languages which has been linguistically validated [12].

The sections consider all the possible characteristics that can explain the sympthoms of
the patients. The first scale is Pain. To this belongs 5 itesm. So, the patient has to evaluate
the degree of pain suffer during walking, using stairs, in bed, sitting or lying, and standing
upright. The second section describes level of Stiffness and 2 items belong to this. Stiffness
after first waking and later in the day. The third section considers the Physical Function of
17 actions. Using stairs, rising from sitting, standing, bending, walking, getting in-out of a
car, shopping, putting on / taking off socks, rising from bed, lying in bed, getting in-out of
bath, sitting, getting on-off toilet, heavy domestic duties, light domestic duties. ] https:
//www.physio-pedia.com/WOMAC_Osteoarthritis_Index

KOOS

In addition to the WOMAC form, the Knee injury and Osteoarthritis Outcome Score (KOOS)
was developed. The main objective of this form is to evaluate short and long term symptoms
and function in subjects with a knee injury and osteoarthritis. Like WOMAC, KOOS divides
the scores depending on the context of the form questions. In this case, it is divided into
5 subscales. Pain, other Symptoms, Function in daily living (ADL), Function in Sport and
Recreation (Sport / Rec), and knee-related Quality of Life (QOL), we included all of them.
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Material and Data conditioning

“Data used in the preparation of this article were obtained from the Osteoarthritis Initiative
(OAI) database, which is available for public access at http://www.oai.ucsf.edu/.
The process of preparing data for OAI required a set of more extensive steps than those per-
formed for the experiment with ADNI information. OAI has its data sets available through
public text files that divide the information by origin and by knee of each patient. In addi-
tion, they include the patient’s clinical and demographic information in separate files. Each
scheduled visit of the patients is a separate file with the information acquired in it and in the
end, a file of patient outcomes is collected. In our case, we used all the information from the
baseline visit; that is, all the text files that had the visiting code as 00. All the clinical, forms
and demographic information of the patient was collected within a single data set. The entire
process require different steps to be completed. So, in the next paragraphs we will detail the
process. A graphical summary of the material used and the participants selections is shown in
the Figure 3.3

Clinical and demographic information patients participating in its initiative. In our case,
we take into account patients whose information is available from the first visit. The demo-
graphic information we consider is age, sex, weight, height and BMI data. On the other hand,
we added 13 variables that belong to the scores generated from the clinical assessments used
for OA screening. The scores included are part of KOOS and WOMAC. In total, this dataset
includes patient information with 18 informative variables. Together with these variables, this
data set provides the outcome of the patients, which in our case is the Total Knee Replacement
(TKR). For the calculation of time-to-event, the first TKR of the patient was taken, regardless
of the knee that is placed to include the information of both knees. Patients who do not have
TKR are censored 3500 days after the start of the follow-up time.

Join Knee X-rays OAI provides Knee X-Rays measurements in different datasets depend-
ing on its origin. In this experiment, we are going to use two main datasets. The first one
contains longitudinal readings of serial knee X-rays for tibiofemoral radiographic OA done
in the Boston University Clinical Epidemiology Research and Training Unit by Dr. Piran
Aliabadi and other researchers [35]. The second dataset contains central longitudinal mea-
surements of joint space width (JSW) and related parameters of serial OAI knee x-rays. This
study was performed by Jeff Duryea at Brigham and Women’s Hospital in Boston [32]. OAI
provides these datasets in a text format divided into the visits during the 48-month follow-up
time. In our case, as we already mentioned, we used just the baseline visit.

In the first case, the file contains information of 12813 longitudinal readings. Of them,
4799 are repeated samples for some patients. Considering that, we use the first appearance
of each patient and we left just 8014 rows on that file. These measurements belong to 4507
patients and there is an observation for each knee. In the case of Duryea data, the same amount
of information was not found. 3090 rows corresponding to left knees and 3088 right knees
were found. Considering that Boston University data has a greater number of observations,
we take that number into account in order to create a complete dataset. Taking into account
that we have information by knee and by the patient, we start with the 4507 data that we have
corresponding to the BU data. We separate the data sets by knee and add the corresponding
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information to the patient’s row Duryea data. Both data sets contain 19 variables belonging to
BU and 32 from Duryea, a total of 51 X-ray characteristics.

To increase the amount of information we are going to analyze, we use the information
we have corresponding to patients. First, we will make simple calculations with the available
information. In this case, we have the information of 4507 patients per knee. We grouped
by the patient in a single data set the information of both knees, leaving us with a data set of
102 variables. We increase the data, adding the sums and the absolute differences between the
measurements of each knee. In total, we will obtain a set with 204 x-ray characteristics.

# Medial Compartment Lateral Compartment

1 150 850
2 175 825
3 200 800
4 225 775
5 250 750
6 275 725
7 300 700

Table 3.4: The relation between positions in the x-axis. The difference between the first
column which belongs to the Medial compartment and the second column belonging to the
Lateral compartment is calculated (Position 150 - Position 850)

Figure 3.4: Approximation of positions on x-axis that Duryea provides in the dataset. Green
section is the representation of the Medial Compartment and the red section is the representa-
tion for Lateral Compartment. Lines between the positions show the relation between them.

Data augmentation (derived information) After simple calculations with available data,
we will explore measurements that have a clinical basis. In this case, we will use measure-
ments that are part of the Joint Space Width (JSW). Considering Duryea’s measurements and
how to analyze the images of your software [DURYEA], there are two sections, the Medial
and Lateral compartment. Duryea takes into account the medial section as the origin for both
axis and the lateral compartment being the limit 1. The measurements corresponding to JSW
will be part of the y-axis, on the other axis, measurements are made in sections that allow you
to have an idea Better how the knee is. The measurements found on the x-axis and are greater
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than 0.5 are part of the lateral compartment. The set of positions on the x-axis from which the
medial compartment measurements are taken is as follows: 150,176,200,225,250,275,300.
The lateral section positions are: 700,725,750,775,800,825,850,875,900.

The first measurement derived from these compartments is the difference between the
opposite measurements of each compartment. That is, the first measurement of the medial
side that corresponds to position 150 will be used to calculate the difference with position
850 that corresponds to the first measurement of the lateral section. The table 3.4 shows the
differences that will be calculated from the positions. A total of fourteen features are added
to the dataset.

Features Source Description Quantity Total

X-ray
measurements BU Longitudinal readings of serial

knee X-rays for tibiofemoral radio-
graphic OA.

19 each knee 38

X-ray
measurements Jeff Duryea Central longitudinal measurements

of JSW.
32 each knee 64

Mean of X-ray
measurements Derived Sum of the corresponding measure-

ments for each knee. 51 measure-
ments of each knee are used in the
sum.

51 51

Absolute Difference of
X-ray measurements Derived The absolute difference in the cor-

responding measurements for each
knee. 51 measurements of each
knee are used in the sum.

51 51

Clinical Data OAI Demographic and clinical informa-
tion of the patient. Scores of OA
assessments for screening.

18 18

Difference on JSW Derived Differences of measurements in the
corresponding positions of each
compartment on each knee.

7 each knee 14

Slopes of JSW Derived Slopes of measurements of each
compartment on each knee.

2 each knee 4

SD of JSW Derived SD of measurements of each com-
partment on each knee.

2 each knee 4

Total features: 244

Table 3.5: Summary of the features used in this Experiment. Detailed information of the
features can be found in the previous paragraphs.

After the differences were calculated, we take advantage of the fact that the data was
already grouped by the medial and lateral compartment of each knee. Two more groups of
variables will be calculated from them. The first is the slope generated from the y-axis values
(measurements) of each of the zones. In other words, a total of 4 slopes will be added, 2
from each knee. The first one corresponding to the medial compartment and the other to the
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lateral one. The calculation of the slope will be made from a linear model for the values of the
measurements. The second measure derived from this grouping of data will be the standard
deviation of the measurements per compartment. Which gives a total of 4 deviations, one
for each compartment. Being a total of 8 variables that joining them with the 14 differences
mentioned above, they form a set of 22 variables derived from JSW. Table 3.5 summaries all
the features, raw and derived features will be listed.

3.1.4 Prognostic Wisconsin Breast Cancer Database
Breast Cancer disease has always been a problem and its prevalence rate is still high today.
Different studies have tried to find patterns that help their diagnosis and clinical treatment.
This is the case of the information available in the Machine Learning Repository of the Univer-
sity of Wisconsin. On which, Dr. Wolberg managed to collect a set of 569 patients since 1984
[120]. The data set has two study options, one data set was focused on the diagnosis of the dis-
ease and another for the prognostic. The characteristics are different depending on the dataset
chosen. In the context of this thesis and considering that our study handles information from
time to event, we will use the prognostic data set available online: https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+\%28Prognostic\
%29. This set just has information about 198 patients. The data set includes 198 patients with
34 characteristics. Among the characteristics is the patient’s clinical information, the con-
dition of recurrence (status) the time to said event and 30 characteristics calculated from a
digitalized image of a fine needle aspirate (FNA) of a breast mass. These characteristics de-
scribe the cell nuclei present in the image. Table 3.6 summarizes the measurements taken for
each of the cells; The method [14] explains their extraction for the set.

Feature Description Type

Outcome Recur (1) or nonrecur (0) Status
Time Time in days Time to Event
Radius mean of distances to the center Cell nucli
Texture standard deviation of gray scale values Cell nucli
Perimeter Cell nucli
Area Cell nucli
Smoothness local variation of radius Cell nucli
Compactness perimeter2

(area−1)
Cell nucli

Concavity severity of concave portions of the contour Cell nucli
Concave number of concave portions Cell nucli
Symmetry Cell nucli
Fractal Cell nucli
Tumor size diameter in centimeters Measure
Lymph node status number of positive axillary lymph nodes Clinical

Table 3.6: Summary of the features of Prognostic Wisconsin BRCA Database. A total of 198
patients and 34 features are used.
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3.1.5 Prognostic San Jose Hospital Breast Cancer Database
As was mentioned in the Introduction of this thesis, BRCA is the most commonly occur-
ring cancer in women and the second most common cancer overall. Specifically, in Mexico
the incidence and mortality of this type of cancer have risen in the past years which lead to
changes in health-care policies to treat this disease and now they focus on early detection and
treatment [2]. Considering this, there are some literature about BCRA in Mexican Popula-
tion [38, 65, 105]. In this experiment we investigated the relationship of tumor image data
with gene expression signatures of 73 subjects with BRCA who underwent digital mammo-
grams and tumor biopsies prior to treatment. These patients were part of the prospective study
“Exploratory study for image-based biomarker discovery of breast cancer and its biological
validation” (THSJ-BC) which was approved by the institutional review board years ago. We
recruited patients with breast cancer identified by mammography or by clinical examination.
All patients were pathologically confirmed. A complete description of patient inclusion cri-
teria, image acquisition and feature extraction, gene signatures estimations are detailed in the
original publication [105]. Table shows the summary of the features used in the previous
works.

Data conditioning

In this experiment, we add the real recurrence information to the image raw features and gene
signatures data. The Follow-up information was collected from the enrollment date to the last
section of the year 2019.

The recurrence date is set on the date of the visit in which the patient change his con-
dition. The patients survival information is summarized in Table 3.7. The remaining features
were used as they were in the Experiment of Tamez et al. We used absolute differences and
means of each raw features. also we used gene exam scores. The following subsection ex-
plains more about the features.

Condition Age Age >50 Mean(age) Mean time (censored,event)

Recurrence 17 8 49.65 1004
No Event 56 28 50.59 1849

Table 3.7: Survival groups of patients suffering of BRCA in San Jose experiment

Features

Table 3.1.5 summarizes the features used in this experiment. First feature type ”Image Fea-
tures” are the same used in [105]. Means and absolute differences on Mammograms measures
are used. The features were extracted in different groups by using some approaches. The de-
scription of the technique used for the feature extraction process is found in the original paper.
The final data used is part of the Additional Resources that the paper provides. In this work,
we used 25 signal distribution features, 25 fractals, 24 gray level co-ocurrence texture fea-
tures, 40 features derived by Minkowski functionals, 400 features coming from the Wavelet
functionals decomposition and 25 local standard deviations.
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Feature Type Group Features Description

Image
Features

Signal
distribution 25 Specify the pixel-wise variations of the ROI

signal intensities. Particular importance was
considered in the smaller and larger quan-
tiles

Fractals 25 A set of texture features based on signal dis-
tribution of the local fractal dimension

Gray Level
Co-Ocurrence 24 Haralick’s gray-level co-ocurrence matrix

texture features: energy, entropy, correlation,
difference moment, inertia, cluster shade,
prominence and Haralick correlation at 3
distances (1,2 and 4 pixels).

Minkowski
functionals 40 Ten values (curvature energy, kurtosis,

largest derivate, mean, half of maximum
height, skewness, energy of the derivate, or-
der of largest derivate, signal standard devi-
ation, functional standard deviation) of the
area, contour lenght, Euler number, and
compactness of the image resulting from the
binarization of the ROI at uniformly spaced
threshold values

Wavelet
functionals 400 Decomposition of the images using the

Daubechies-4 mother wavelet in 2D at multi-
resolution levels. The resulting images were
subject to the signal distribution and fractal
features extraction process (4x4x25)

Local
standard
deviation

25 Signal distribution of the standard deviation
from a 3x3 pixel image

Gene
Expressions

Oncotype
and PAM50 4 Oncotype, PAM50 scores and calculated av-

erage Risk

Patient
Information

Clinical 7 Clinical patient information
Survival 2 Recurrence and time to event variables.

Table 3.8: San Jose BRCA information summary of features. First column describe the feature
type, the second details the group of the features. Third column shows the number of features
on that group and the last column shows the description of the group
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Besides, we include the gene expressions scores used in the same work (Oncotype and
PAM50) which adds 4 variables. The Patient information is also used with the survival infor-
mation of each patient which adds 9 features. A total of 1091 features were analyzed in this
experiment.

3.2 Cox Benchmarking implementation
Within the FRESA.CAD package [104], there are different benchmarking methods to com-
pare machine learning algorithms behavior for different outcomes. Benchmarking for binary,
ordinal and regression classification outcomes are fully available for use in that package. Each
of the benchmarking methods considers many widely and commonly used algorithms to ex-
plain the outcome. FRESA.CAD details the output of these techniques and returns a model,
which quantitatively and graphically, allows comparing the performance of these techniques
in a cross-validation technique. On the other hand, other outcomes such as the survival anal-
ysis outcome, do not have methods that allow a simple comparison between different strate-
gies. Specifically, ML/SL algorithms that make use of Cox models do not have a known
benchmarking method for use. For this reason, this thesis details the implementation of Cox
Benchmarking to be included within FRESA.CAD and later be used for the comparison of
performances in the different experiments detailed in this chapter in section 3.1.

For the Cox Benchmarking implementation we are going to use Cox model. Propor-
tional hazard model (PH) or Cox models explore the relationship between the time to the
event and the possible explanatory variables. The model estimates the hazard λi of the subject
i given the observed feature vector Xi = {Xi1, . . . , Xip}, and the unknown baseline hazard
λ(t0). i.e,

λi(t|Xi) = λ(t0)e(Xi · β) , (3.2)

where β = {β1, . . . , βP} is the vector of coefficients. Hence, the Cox model provided
an estimate of total hazard (risk) of conversion, for an individual, given the observed features.
Due to the large set of possible qMRI features to be considered in some of the Cox models,
machine learning (ML) methods were used to find the “optimal” set of features and their
corresponding coefficients that mimiced the observed rate of conversion.

Statistical techniques such as the PH model require technical implementations and com-
plex calculations that are better optimized through machine learning techniques. The imple-
mentation of this Cox Benchmarking method has 11 different Machine Learning and Learning
Statistics strategies that make use of the Cox technique for the evaluation of survival with time
data at events. These strategies are included in subsection 3.2.1 of this section. The ML/SL
approaches use feature selection (FS) as a common method used to construct Cox [15, 1] mod-
els. The wide variety of methods available to researchers can turn the discovery of biomarkers
into a complex effort, especially when there is no clear choice of methodology to build/explore
survival models. Thus, as a simpler model in which the result can be better explained through
its predictors. Fully linked is the model selection, which is also an important step when con-
ducting experiments with machine learning techniques. Different characteristics can generate
different models, which, as appropriate, need a set of statistics that can evaluate the perfor-
mance of each model and detect the model that maximizes or minimizes the statistics or the
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set of them for the result and specific methods. In the specific case of this implementation, of
the 11 methods, just 7 present the techniques of FS and MS for the study of survival of time-
to-event data. These methods will be treated as Wrappers throughout the Cox Benchmarking
implementation and the remaining 4 will be labeled as filters.

We propose a unified approach for the study of Cox models in an ML setting. The ap-
proach is based on repeated cross-validating ML/SL methods using exactly the same training-
testing sets across all the methods. The ML implementation evaluates LASSO, RIDGE,
BSWiMS, GPDAS, SPDAS, SPDAS adjusted with Bayesian information criterion (BIC) (SP-
DAS.BIC) [97] and Univariate Filtering for building suitable survival models. Thus, at the
end of the repeated CV, a fair method comparison and a comprehensive evaluation of the
role of each potential biomarker inside a Cox survival model is provided. The Cox Bench-
marking implementation is available in the following link. The most important points of the
implementation are detailed below.

3.2.1 Default ML/SL algorithms

Statistical Learning (SL) and Machine learning (ML) approaches provide efficient and highly
competitive solutions to the issues of regularization and subset selection. Embedded statis-
tical learning like L1 regularization via LASSO or L2 regularization RIDGE, allows the ex-
ploration of multivariate models composed on hundreds of features [98]. Also, this technique
allows subset-selection with the exploration of realizable Cox models from a big number of
features [117]. Model selection via the Bootstrap Step-Wise Model selection (BSWiMS),
and two algorithms on Best subset selection package (BeSS) (Golden section primal-dual
active set (GPDAS) , Sequential primal-dual active set (SPDAS)) are among three of the ma-
chine learning options readily available to researchers [117, 105]. This implementation of
Cox Benchmarking allows the comparison of Machine Learning techniques through the cal-
culation of the graphic and quantitative organization of the statistics of each of the models.
Specifically, it allows the evaluation of the 11 pre-defined strategies by default. All the 11
strategies are part of the afforementioned R packages plus the Survival Package [111]. All the
methods were modeled into the FRESA.CAD enviroment for its best coupling between them.
The modeling process were implemented for this thesis.

Besides, the benchmarking process divides the techniques to be compared into two main
groups. The Wrappers section, that uses algorithms that allow the selection of features, model
construction and subsequently the selection of the best model. In contrary, the second section
only considers the selection of characteristics of some methods and later construct a single
Cox model.

FRESA.CAD. For the default methods, three freely available packages are considered,
which use the proportional model for the study of survival information The first method in-
cluded was the Bootstrapped Stage-wise Model Selection (BSWiMS). BSWiMS is part of the
FRESA.CAD R package and is a supervised model-selection method aimed to select a unique
statistical model that predicts a user-specified outcome, in this case, a survival outcome. The
statistical model is constructed by bagging a set of Cox models built by the unique set of
model-wise statistically-significant features [105].
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GLMNET. The second package was the Penalized Cox Regression (CoxNet) part of the
glmnet. CoxNet algorithm fits the Cox Model regularized by an elastic net penalty [98].
Different parameters on the Elastic net penalty lead to different SL methods. Therefore, by
changing the value of the alpha parameter we manage to control the type of regularization
that will be used to find the model. All possible regularizations were executed with internal
cross-validation, to determine the optimal lambda value. In this case, we executed Coxnet
with three different values of alpha (α = 1, α = 0.95 and α = 0) which resulted in two dif-
ferent approaches. The first method was executed in the LASSO penalty (alpha=1). Briefly,
the LASSO considers the L1 regularization only, which decreases the coefficients by a con-
stant (lambda) to perform feature selection removing those coefficients lower than lambda.
With alpha=0, the method regularizes the model with a RIDGE penalty. RIDGE considers
L2 regularization which scales all the coefficients towards 0 but sets none to exactly zero.
Further, with an alpha value between 0 and 1, we get the ELASTICNET approach which is
a mixture of L1 regularization and ridge regression. We used α = 0.95 because the model
will work like lasso and only deleting the degenerate behavior due to extreme correlations.
In the CoxBenchmarking tool, the user can specify an alpha value for the regularization. In
this thesis, we used the most common alpha values among literature and recommended author
values for each of the techniques. Formula 3.3 summarizes how the alpha value works in the
regularization process. With α = 0 it turns into ridge regression, with α = 1 it turns into
Lasso. Values between 0-1 turn the regularization into ElasticNet penalty.

α
∑
|βi|+ (1 + α)

∑
β2
i ≤ c. (3.3)

Thus, the last two methods better handle correlated predictors but do not select features.
To overcome this limitation, we proposed a threshold value to select a limited number of
features. Features that do not exceed the coefficient threshold were considered to build the
model.

BeSS. The third strategy used was the Primal-dual Active set. This is part of the BeSS (Best
subset selection) R package. This method uses an efficient active set algorithm to choose the
best possible Cox model. As Coxnet, BeSS can also turn into different strategies; this time
by using different algorithms. The default configuration proposed by BeSS authors uses the
Golden Section primal-dual active set (GPDAS) algorithm [117], our fourth method. The
second algorithm derived from BeSS is the Sequential primal-dual active set (SPDAS) that
attains the minimum Generalized Information Criterion [77]. SPDAS turns out to be our fifth
method. Finally, the third BeSS derived strategy uses the same SPDAS algorithm but this time
adjusted by BIC.

Filters. Of these three packages, the three default algorithms were selected as a feature se-
lection algorithm for the filters section. BeSS uses GSPDAS, GLMNET uses LASSO and
FRESA.CAD uses BSWiMS to find the features that will build a unique Cox model for each
model. These three filters are combined with an extra filtering method, Univariate Cox Anal-
ysis. UniCox uses a certain threshold to choose the characteristics with a p-value lower than
the configured one (Default value: p < 0.2). Table 3.9 details the default Cox Benchmarking
algorithms.
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# Algorithm Source
Packgage Type

1 BSWiMS FRESA.CAD Wrapper

2
Cox with
BSWIMS

Survival
and FRESA.CAD Filter

3 LASSO GLMNET (Coxnet) Wrapper
4 RIDGE GLMNET (Coxnet) Wrapper
5 ELASTICNET GLMNET (Coxnet) Wrapper

6
Cox with
LASSO GLMNET (Coxnet) -Filter

7 GSPDAS BeSS Wrapper
8 SPDAS BeSS Wrapper
9 SPDAS.BIC BeSS Wrapper

10
Cox with
GSPDAS

BeSS,
Survival Filter

11
Univariate

Cox Survival Filter

Table 3.9: Default algorithms used in CoxBenchmarking method.

Algorithm 4 Cox Benchmarking Algorithm
1: procedure COXBENCHMARKING(Data, Outcome, Reps, TrainFraction, Reference)
2: if Reference is null then
3: Reference← RHOCV(BSWiMS)
4: referenceTrainSampleSets← Reference.trainSampleSets
5: else
6: referenceTrainSampleSets← CalculateStatsForReference(Reference)
7: end if
8: SurvivalStatsTable← []
9: ClassificationStatsTable← []

10:
DefaultWrappers← [Reference, ”LASSO”,”RIDGE”,”ELASTICNET”
”GSPDAS”, ”SPDAS”, ”SPDAS.BIC”]

11:
DefaultFilters← [”Cox.Reference”,”Cox.LASSO”, ”Cox.GSPDAS”,
”Cox.UnivariteCox”]

12: for i← 1, len(Wrappers) do
13: model← RHOCV(Wrappers[i])
14: SurvivalStatsTable[i] ¡- CalculateSurvivalStats(model)
15: ClassficationStatsTable[i]¡- CalculateClassificationStats(model)
16: end for
17: for i← 1, len(Filters) do
18: model← RHOCV(Filters[i])
19: SurvivalStatsTable[i] ¡- CalculateSurvivalStats(model)
20: ClassificationStatsTable[i]¡- CalculateClassificationStats(model)
21: end for
22: return← (SurvivalStatsTable, ClassificationStatsTable)
23: end procedure
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3.2.2 Cox Benchmarking Algorithm

This method follows a specific flow for each of the strategies that will be compared. The
method allows comparing a set of methods or a single one as a reference, compared to the
default methods described above. If a set or reference element is not defined, BSWiMS will
be used by default as the reference method for comparison. Cox Benchmarking follows the
following algorithm:

Algorithm 5 Stats Algorithms for CoxBenchmarking
1: procedure CALCULATESURVIVALSTATS(Predictions, Plotname = ””)
2: CIRisks← CalculateC-IndexRisks(Predictions[”Outcome”,”RisksMedian”]
3: CIFollowUp← CalculateC-IndexFollowUp (Predictions [ ”Outcome”, ”FollowUpTi-

mesMedian”]
4: LogRankTest ← CalculateLogRank(Predictions[”Outcome”,”TimeToEnvent”,

”Risks”]
5: if plotname is not null then Curves ← PlotKM(preds >
median(Predictions[”Median”])

6: end if
7: Return← CIRisks, CIFollowUp, LogRankTest, Curves
8: end procedure
9: procedure CALCULATECLASSIFICATIONSTATS(Predictions, Outcome)

10: PredsForBinary← Predictions[”Outcome”, ”LinearPredictors”]
11: Return← FRESA.CAD.predictionStatsbinary(PredsForBinary)
12: end procedure

The Cox Benchmarking method is responsible for executing an RHOCV for each of the
algorithms that need to be compared. The reference method or methods define the data set to
be used as a train and test for all models. The training fraction is what defines the percentage
of patients that will be used for each set. The fact of allowing a list of algorithms as a reference
gives the user the freedom to call more RHOCV with other methods to include them in the Cox
Benchmarking process. The medians of the different survival and classification predictions
generated in each iteration of the cross-validation of each method are calculated and returned
by the standardized output of the RHOCV from FRESA.CAD. The predictions for each of
the test subjects are used to calculate statistics in both contexts and are accompanied by 95%
confidence intervals.

3.2.3 Random Holdout Cross Validation implementation

All these strategies also require the use of processes that allow fair evaluation among them
and provide statistics that are reliable in order to draw conclusions. Taking this situation into
account, the implementation makes use of RHOCV. The RHOCV strategy was implemented
as an extension of FRESA.CAD R package https://github.com/joseTamezPena/
FRESA.CAD. The current development version of this package with the CoxBenchmarking
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and RandomCV implementation can be found at:1 The main aim of this thesis is the compre-
hensive evaluation of different ML approaches that return or select “optimal” Cox models. We
used repeated holdout cross-validation (RHOCV), for the evaluation of different ML strate-
gies. The test results of the RHOCV were used to compare and explore the performance of
the machine learning alternatives.

The strategy divided the data into random training and testing sets with a user-supplied
train fraction. The training set was used for model selection, while the holdout set was used to
validate the trained method [105]. The RHOCV for survival analysis requires the calculation
of corresponding statistics for survival models, in this case: the RHOCV implementation
used the R package Survival to calculate the final Cox predictions of each selected model. Cox
predictions returned the linear predictions, the risk, and the expected follow-up times (FT) and
implemented execution times, the Jaccard index, the model size, and the training and testing
samples of every single method. A detailed summary of the stats that RHOCV calculate
is found below. Stats The Jaccard index (JI) computed the average similarity between the
selected features between models, and can be written as:

J =
2

(R2 − 2R)

R∑
i=(j+1)

R−1∑
j=1

|Ai ∩ Aj|
|Ai ∪ Aj|

, (3.4)

where R is the number of holdout repeats, and Aj is the set of the k selected features
for the Cox model of the j holdout training sample. The range of the index varies from 0 to
1, where 1 represents that the feature selection method always selects the same set of features
on each repetition. The R implementation also reported summary statistics of the test results.
The Cox-fitted coefficients βj on each training set Tj were used to get the linear predictions
f ji of the holdout set T cj at each repetition:

f ji = Xi · βj, ∀ i ∈ T c
j and ∀Xi ∈ Aj , (3.5)

Once all the test predictions were obtained for each repetition, the testing results were
summarized by computing the median prediction of each subject: f̃i = median(

{
f 1
i , . . . , f

R
i

}
).

The median prediction was used to divide the groups into: High-risk (HR:f̃ ≥ 0) vs Low-risk
(LR : f̃ < 0). The receiver operating characteristic (ROC) plots and their area under the
curve (AUC) with their corresponding 95% confidence intervals (95%CI) were computed for
the median prediction using the pROC package [91]. Accuracy (ACC), sensitivity (SEN), and
specificity(SPE) describing the ability of the Cox models to predict censored vs uncensored
subjects were computed based on the number of true positives (TP), and true negatives (TN).

TP =
∣∣∣(f̃ ≥ 0

)
∩ uncensored

∣∣∣ , (3.6)

TN =
∣∣∣(f̃ < 0

)
∩ censored

∣∣∣ , (3.7)

ACC =
TP + TN

|uncensored+ censored|
, (3.8)

1https://github.com/joseTamezPena/FRESA.CAD
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SEN =
TP

|uncensored|
, (3.9)

SPE =
TN

|censored|
, (3.10)

Object Definition

errorciTable the matrix of the balanced error with the 95 CI
accciTable the matrix of the classification accuracy with the 95 CI
aucTable the matrix of the ROC AUC with the 95 CI
senTable the matrix of the sensitivity with the 95 CI
speTable the matrix of the specificity with the 95 CI

errorciTable filter the matrix of the balanced error with the 95 CI for filter
methods

accciTable filter the matrix of the classification accuracy with the 95 CI for
filter methods

senciTable filter the matrix of the classification sensitivity with the 95 CI
for filter methods

speciTable filter the matrix of the classification specificity with the 95 CI
for filter methods

aucTable filter the matrix of the ROC AUC with the 95 CI for filter methods
CIRiskTable the matrix of the concordance index on Risk with the 95 CI

CIFollowUpTable the matrix of the concordance index on Follow-up times with
the 95 CI

LogRankTable the matrix of the LogRank Test with the 95 CI

CIRisksTable filter the matrix of the concordance index on Risk with the 95 CI for
the filter methods

CIFollowUpTable filter the matrix of the concordance index on Follow-up times with
the 95 CI for the filter methods

LogRankTable filter the matrix of the LogRank Test with the 95 CI for the filter
methods

times The average CPU time used by the method
jaccard filter The average Jaccard Index of the feature selection methods

TheCVEvaluations The output of the randomCV (randomCV) evaluations of the
different methods

testPredictions A matrix with all the test predictions
featureSelectionFrequency The frequency of feature selection

cpuElapsedTimes The mean elapsed times

Table 3.10: Output of Cox Benchmarking Model. Left side lists the name of the objects in the
model and Right side describes it.
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3.2.4 Cox Benchmarking Model

The Cox Benchmarking model tries to summarize each of the cross-validations in a single
process. To do this, it defines a model with a certain group of characteristics that allow
comparison and subsequently the graphic sample of the process. Table 3.10 defines each of
the outputs of the Cox Benchmarking model and the definition of each of them. The Cox
function between its outputs is responsible for generating the KM curves and the ROC curves
for each method to be compared.

CoxBenchmarking Plot

To summarize the output of this model, a function that generates graphs for the different
statistics was implemented. The function tries to graphically compare each of the methods
together with their confidence intervals, and thus be able to conclude statistical differences
between each of the models. All the barplots were implemented in R for this thesis. The
implementation is based on the Benchmarking techniques of FRESA.CAD. This function
provides the following graphs:

• Barplot classification stats: SEN, SPE, ACC, AUC.

• Barplot survival stats: C-Index Follow up times, C-Index Risks, Log-Rank p-value.

The figure 3.5 shows an example of the CoxBenchmarking plot function result.

3.3 Summary

In this chapter we described all the tools and information used to accomplish the thesis objec-
tive. Mainly focused on two things, the implementation of the Benchmarking algorithm for
the analysis of methods that work with the Cox Model; and second, the clinical and simulated
information used to evaluate the behavior of the CoxBenchmarking function and its impor-
tance. In the following paragraphs, we will present a brief summary of each of the sections,
which will allow us to remember each of the important points before detailing the results of
each experiment and understanding the conclusions and discussions of them.

3.3.1 Experiments: Data adquisition, preparation and analysis

This section detailed all the points corresponding to the data used, the origin, the version, the
necessary changes in the data to be able to use them with our strategy, the calculations of de-
rived data to be able to find information that serves to make clinical decisions, among others
issues. In this summary, the origin of the data and the main objective of each of the experi-
ments will be briefly explained. In addition, the main changes and numbers of characteristics
and subjects used will be put into context. For more information on each experiment, each
subsection itself can be found in this chapter.
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Figure 3.5: Example of CoxBenchmarking plot result. In the figure we can see (a) Accuracy
barplot for accuracy of some model (b) Concordance Index Follow-up Times barplot (c) Num-
ber of features selected by the default Cox Benchmarking methods (d) Jaccard Index selected
by the default Cox Benchmarking methods

Simulation data The experiment with simulated information aims to make use of the ground
truth to test the results of the CoxBenchmarking method. In this case, it was decided to take the
simulation of data from 1000 possible NBA players as true. Descriptive data of his physique
and statistics of past games were generated, which would allow predicting the number of sea-
sons that will be part of the league. A total of 11 characteristics were created and each of them
was assigned a weight within the survival equation. Depending on the experiment, that weight
changed and affected the status of the game. The time to event was generated randomly, tak-
ing into account the probability of survival calculated from the weights of the characteristics
and their measurements for each subject.

The experiment was divided into two. The first of them uses only 4 simulated charac-
teristics to generate the probability of survival and the second of 11. The two experiments
have three sub-experiments, giving a total of 6 mini-experiments within the simulation exper-
iment. The first mini-experiment adds the number of random characteristics equal or similar
to that of real characteristics (4/11 real features - 4/10 random features). The second one,
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tries to complete the characteristics to the 100 available ones, that is to say in the experiment
of 4 characteristics it adds 96 random columns and to the one of 11, it adds 90. The last
mini-experiment simulates 1000 characteristics so it consequently adds 996 features and 990.

TADPOLE/ADNI The ADNI experiment consists of two sub experiments that make use of
the same subjects. With information from the ADNI initiative specifically that which comes
from the TADPOLE challenge, we use information from 442 patients who underwent MRI
screening and have their available. From them, we extracted information corresponding to
CSF Measures, qMRI, APOE, clinical and demographical information, and lastly Cognitive
Assessments. The first experiment’s main objective is to test the capacity of qMRI features
combined with the APOE factor to predict the conversion between MCI and AD. This con-
version is currently explained through some factors we want to know how much information
will these radiomics features provide to the conversion. Regarding the results, we decided
to assess once more how the other available information which is already used to screen the
conversion, so with that compare and measure the importance of the qMRI feature versus the
clinical real used factors. For this, 7 subsections are developed, each section builds models
for each type of existing data and their combination with the image information.

Osteoarthritis Initiative With information from the OAI initiative, the experiment with
Osteoarthritis data aims to make survival analysis on the total knee replacement event (TKR).
For this, all the information of x-rays images available in OAI is used and it is combined with
the information of screening forms of each knee. A total of 4507 patients are used for the
study. The set was divided into 1000 patients for a train set, and the remaining for the test.
Of those 1000, 70% of the events were used within the 1000 patients and the reamaining 30%
belong to the test set. Data were derived from the image information to have more informative
features of the outcome.

Prognostic Wisconsin Breast Cancer Database The study with breast cancer information
from Wisconsin tries to find the prediction of the recurrence time of patients suffering from
the disease. For this, 198 patients with 34 clinical characteristics that come from cell mea-
surements and tumor features were taken into account. This experiment was performed with
the information as it is found publicly.

Prognostic San Jose Hospital Breast Cancer Database Finally, within the summary of
the data are the BRCA data of the San José hospital. As an extra study for the one that was
made a few years ago by Tamez et al. This experiment adds medical tracking information
(survival) to the image information extracted in that work. The information and time at which
the patient’s recurrence was determined are added to each patient. The CoxBenchmarking test
is carried out with information of 73 and 1091 variables.

3.3.2 Cox benchmarking
This section describes the CoxBenchmarking algorithm and the functions used within it. The
default methods used in each benchmarking use are described and the characteristics of both
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input and output are detailed. In its description are the details of the statistics calculated for
comparison, as well as the implementation of the graphical functions that allow the summary
of the results in a simpler way.

First of all, describe the benchmarking algorithm that begins with one or more reference
methods. The reference must be an object or several that are compatible with the Random
Holdout Cross-Validation output detailed below. The CoxBenchmarking method is responsi-
ble for creating the structures where you will organize and then report each of the statistics.
After having the statistics, proceed to perform the same process for each of the methods that
the method has by default.

Random Holdout Cross Validation All these strategies also require the use of processes
that allow a fair evaluation between them and provide reliable statistics to draw conclusions.
Given this situation, the implementation makes use of RHOCV. The RHOCV strategy was
implemented as an extension of the FRESA.CAD R. The main objective of this thesis is the
comprehensive evaluation of different LD approaches that return or select ”optimal” Cox mod-
els. We use Cross-validation of repeated waiting (RHOCV), for the evaluation of different LD
strategies. The results of the RHOCV test were used to compare and explore the performance
of machine learning alternatives.



Chapter 4

Experiment Results

This chapter states all the experiment results and tries to summarize all the stats generated
by showing data numerically and graphically. Taking into consideration the data explained
in the last chapter, the first experiment made was the analysis of survival time of the NBA
data simulation. In all the internal experiments belonging to Experiment I, all the methods
found the correct features, but some selected some random variables together with the 4 or 10
generated variables, which really do have relation to the outcome. Following, results on two
experiments with TADPOLE/ADNI data are detailed. These two experiments were the first to
use the CoxBenchmarking method clinically, Experiment II and III. Experiment II just took
into considaration the image data information with descriptive clinical information of each pa-
tient to evaluate the capacity of qMRI features to predict the conversion between two stages of
Alzheimer’s disease. Experiment III unlike the previous experiment studied the improvement
of these variables against the information provided by the characteristics of CSF Measures
and the numerical information obtained through clinical forms that are used to diagnose the
disease. Both results were presented at international conferences and the clinical information
obtained was discussed with the help of health professionals. Then, another clinical analysis
was developed, this time with information concerning Osteoarthritis data. This experiment
is detailed as Experiment IV. On this occasion, the results obtained by submitting the infor-
mation processed by OAI are shown. Finally, two data sets with information about breast
cancer are reported. Experiment V analyzed the BRCA prognostic information provided by
the University of Wisconsin. previous experiments with this data found that Cox analysis fails
to determine a separation between high and low-risk patients, so our experiment got the same
result. The last of experiments, Experiment VI, is performed with breast cancer information
from the San José Hospital. All these experiments used information treated for the develop-
ment of this thesis. Each experiment used a similar methodology; however, different tools are
used for each experiment to report the results as appropriate.

4.1 Simulation data

For the simulated data experiment, 6 different experiments were run in two sections. The
first considered only 4 real variables related to the result and the second 10 of them. First we
add the same number of real characteristics to each dataframe. 4 in the first section and 10
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in the second one. In both cases, the necessary characteristics were added to complete 100
and 1000 variables in the dataframe were used as the next experiments. The results for these
experiments are detailed below. In all the cases, the number of iterations were 20 and the train
fraction was 0.7. For the generation of these survival times, a censorship rate of 20% was
used. If the random number of censorship generated was lower than the rate (0.2), then the
subject was censored at that simulated time.

4.1.1 4 variables

In this case just 4 real variables were considered for the survival function estimation. Ofensive
Rating (ORtg), Defensive Rating (DRtg), Injuries (I) and surgeries (S) were used, two Normal
distributed variables (ORtg, DRtg) and two binomial distributed variables (I,S). The status
and the event time were simulated with an R script that considered the hazard and survival
probability of each subject in each period of time. A set of probabilities for each subject
were simulated with a Normal distribution. If that probability was lower than the survival
probability the event happened and the period of time was assigned as the event time. In this
case, the data simulation set had 573 subjects with an event and 427 censored throughout the
study.

8 features (4 real - 4 random)

This was the most simple experiment with a data simulation dataset. A total of 8 character-
istics were analyzed by the CoxBenchmarking tool. As expected, all the methods work very
well on this kind of data. Seven model built with wrapper methods and four models with
filters. Table 4.1 summaries the stats of the wrapper methods. The filter section found the
same stats on all the methods, differences were found in the marginal decimal places; so, their
results will be reported as one stat. Almost all the methods found the same stats in survival
and classification stats. This is the case of the area under the curve which in all the models
was the same AUC =0.74(0.71,0.77). The main difference between them was the number and
the features selected.

The model I built with BSWiMS selected a mean of 2.90 features with a Jaccard index
of 0.93. Two of the Four real features were selected all the times, Injuries and Surgeries. The
offensive rating was selected in 18 iterations. Defensive Rating was never selected such as
all the four random variables. BSWiMS got ACC =0.68(0.65,0.71), SEN =0.68(0.64,0.72),
SPE=0.68(0.64,0.72), C-Index Risks=0.7(0.69,0.72). The second model uses LASSO strat-
egy. It found an average of 6.55 features by a model with a Jaccard index of 6.55. The same
three features were selected all the time, and the Defensive rating was selected in 90% of the
iterations, but this time all the random variables were used in the model in at least half of the
iterations. Model II got ACC =0.68(0.65,0.71), SEN =0.68(0.64,0.72), SPE=0.68(0.63,0.72),
C-Index Risks=0.71(0.69,0.72).
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Figure 4.1: KM and ROC Curves for the Simulation experiment of 8 features (4 real - 4 ran-
dom features) (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS (BeSS)
(f) SPDAS (g) SPDAS with BIC
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Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.64,0.72)

0.7
(0.69,0.72)

0.58
(0.56,0.61)

II 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.63,0.72)

0.71
(0.69,0.72)

0.62
(0.6,0.64)

III 0.68
(0.64,0.7)

0.68
(0.64,0.72)

0.67
(0.63,0.71)

0.71
(0.69,0.72)

0.64
(0.62,0.66)

IV 0.68
(0.64,0.7)

0.68
(0.64,0.72)

0.67
(0.63,0.71)

0.71
(0.69,0.72)

0.64
(0.62,0.66)

V 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.63,0.72)

0.7
(0.69,0.72)

0.58
(0.56,0.6)

VI 0.67
(0.64,0.7)

0.67
(0.63,0.71)

0.68
(0.63,0.72)

0.7
(0.69,0.72)

0.58
(0.56,0.6)

VII 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.63,0.72)

0.7
(0.69,0.72)

0.58
(0.56,0.6)

Table 4.1: Classification and survival stats for wrapper methods in the Simulation experiment
of 8 features (4 real - 4 random). I = BSWiMS, II = LASSO, III = RIDGE, IV = ELAS-
TICNET, V = GSPDAS (BESS), VI = SPDAS (BESS.SEQUENTIAL), VII = SPDAS.BIC
(BESS.SEQUENTIAL.BIC). Worst scores for each stat are bolded.

The third model was constructed with Ridge strategy. As is well-known the RIDGE
strategy selects a big number of features. This time, it chose a mean of 7.90 features with
a Jaccard index of 0.97. Those numbers indicate that all the features were used, just a
random variable was ignored in two iterations. Model III got ACC =0.68(0.64,0.7), SEN
=0.68(0.64,0.72), SPE=0.67(0.63,0.71), C-Index Risks=0.71(0.69,0.72). Model IV built with
the ELASTICNET method found the same results as the last method.

Model V uses the GSPDAS algorithm. It used an average of 5.30 features in the mod-
els and its Jaccard index is 0.74. The four real features were selected every time. One
of the random columns were used in the 50% of the iterations and the other three is less
than 10 iterations. GSPDAS resulted in an ACC =0.68(0.65,0.71), SEN =0.68(0.64,0.72),
SPE=0.68(0.63,0.72), C-Index Risks=0.7(0.69,0.72). SPDAS algorithm developed Model VI.
It used a mean of 3.40 features with a Jaccard index of 0.85. As happened with BSWiMS, of
the four real features, just the defensive rating was not selected in all the iterations. But this
time, it was selected in more than 5 iterations. A random variable was used just in 10% of the
models. Model VI got ACC =0.67(0.64,0.7), SEN =0.67(0.63,0.71), SPE=0.68(0.63,0.72),
C-Index Risks=0.7(0.69,0.72). Finally, Model VII built with SPDAS with Bayesian Infor-
mation Criterion used an average of 3.05 features to build the models. Its Jaccard index is
0.975. In this case, a Defensive rating was just used in one model out of 20 possible. The
other real features were selected always. This Model VII reported ACC =0.68(0.65,0.71),
SEN =0.68(0.64,0.72), SPE=0.68(0.63,0.72), C-Index Risks=0.7(0.69,0.72).
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100 features (4 real - 96 random)

The second experiment uses the same 4 real variables and added 96 random variables. 46
random variables are binomially distributed and the remaining ones are normally distributed.
The first model uses BSWiMS. Unlike the first experiment, BSWiMS selected less number of
features on average (2.55 vs. 2.90). Its Jaccard Index is also lower at 0.83. This model chose
Lesions and Surgeries in all the iterations and Offensive rating just in the half of the iterations.
All the 96 random variables were ignored. Model I got AUC = 0.73(0.7, 0.77), ACC = 0.68
(0.65, 0.7), SEN = 0.67 (0.63, 0.71), SPE = 0.69 (0.64, 0.73), CI-Risks = 0.7 (0.69, 0.72) and
CIFU = 0.58 (0.56, 0.61).

Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.68
(0.65,0.7)

0.67
(0.63,0.71)

0.69
(0.64,0.73)

0.7
(0.69,0.72)

0.58
(0.56,0.61)

II 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.63,0.72)

0.7
(0.69,0.72)

0.7
(0.68,0.72)

III 0.66
(0.63,0.69)

0.65
(0.61,0.69)

0.66
(0.62,0.71)

0.69
(0.67,0.7)

0.77
(0.75,0.79)

IV 0.66
(0.63,0.69)

0.65
(0.61,0.69)

0.66
(0.62,0.71)

0.69
(0.67,0.71)

0.78
(0.76,0.79)

V 0.67
(0.64,0.7)

0.66
(0.62,0.7)

0.67
(0.62,0.71)

0.69
(0.68,0.71)

0.57
(0.55,0.59)

VI 0.68
(0.65,0.71)

0.68
(0.64,0.72)

0.68
(0.63,0.72)

0.7
(0.69,0.72)

0.58
(0.56,0.6)

VII 0.68
(0.65,0.7)

0.68
(0.64,0.72)

0.67
(0.62,0.71)

0.71
(0.69,0.72)

0.58
(0.56,0.6)

Table 4.2: Classification and survival stats for wrapper methods in the Simulation experiment
of 100 features (4 real - 96 random). I = BSWiMS, II = LASSO, III = RIDGE, IV = ELAS-
TICNET, V = GSPDAS (BESS), VI = SPDAS (BESS.SEQUENTIAL), VII = SPDAS.BIC
(BESS.SEQUENTIAL.BIC). Worst scores for each stat are bolded.
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Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.68
(0.65,0.7)

0.67
(0.63,0.71)

0.69
(0.64,0.73)

0.58
(0.56,0.61)

0.58
(0.56,0.61)

II 0.67
(0.64,0.7)

0.68
(0.64,0.72)

0.66
(0.61,0.7)

0.58
(0.56,0.61)

0.58
(0.56,0.61)

III 0.67
(0.64,0.7)

0.66
(0.62,0.7)

0.67
(0.62,0.71)

0.57
(0.55,0.59)

0.57
(0.55,0.59)

IV 0.68
(0.65,0.71)

0.67
(0.63,0.71)

0.68
(0.64,0.73)

0.59
(0.56,0.61)

0.59
(0.56,0.61)

Table 4.3: Classification and survival stats for filter methods with 4 real features and 96 ran-
dom variables. I = Cox with BSWiMS, II = Cox with LASSO, III = Cox with BESS IV =
Univariate Cox. Best scores for each stat are bolded.

Model II was developed with LASSO. LASSO selected a mean of 9.90 features with a
Jaccard Index 0.37. Lesions, surgeries and Offensive Rating were selected in every iteration,
2 random variables were selected in more than half of iterations and Defensive Rating was
just used in two models. A total of 47 features were used to build the model, but just 4
were used in at least half of the models. The second model got AUC =0.73(0.7,0.77), ACC
=0.68(0.65,0.71), SEN =0.68(0.64,0.72), SPE=0.68(0.63,0.72), CI-Risks=0.7(0.69,0.72) and
CIFU =0.7(0.68,0.72). The model III and IV got the same results in the stats once again.
But the number of features selected is different. RIDGE method selected 96.90 features and
ELASTICNET 97.10. Their Jaccard Index is the same as 0.98. All the features were used
but just 65 were used in all the iterations. Model V used the BeSS method with the GSPDAS
algorithm. BeSS selected 56.25 features with 0.48 of the Jaccard Index. The four real features
were selected in all the iterations with the other 5 random variables. GSPDAS also used all
the features but just 59 were used in more than half of the models. GSPDAS reported an AUC
= 0.72(0.69,0.75), ACC = 0.67(0.64,0.7), SEN = 0.66(0.62,0.7), SPE = 0.67 (0.62,0.71), CI-
Risks = 0.69(0.68,0.71) and CIFU = 0.57 (0.55,0.59). Model VI uses SPDAS and selected
3.25 features. Its Jaccard Index is 0.48. Lesions and Surgeries were chosen in all the models,
the Offensive Rating was selected 18 times. 4 random features were also selected but all in
less than 3 iterations. The defensive rating was never selected. Model VI got AUC = 0.74
(0.7,0.77), ACC =0.68(0.65,0.71), SEN = 0.68 (0.64,0.72), SPE = 0.68 (0.63,0.72), CI-Risks
= 0.7(0.69,0.72) and CIFU = 0.58 (0.56,0.6). Model VII uses SPDAS with BIC. It selected
4.40 features on average with a Jaccard Index of 0.68. It chose the three real features in all
the models, defensive rating in one iteration and other nine random features selected ranging
between 0.45%-0.05%.
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Figure 4.2: KM and ROC Curves for the Simulation experiment of 100 features (4 real -
96 random features) (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS
(BeSS) (f) SPDAS (g) SPDAS with BIC
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Figure 4.3: KM and ROC Curves for wrappers methods with the 4 real features and 996
random created with (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS
(BeSS) (f) SPDAS (g) SPDAS with BIC

1000 features (4 real - 996 random)

In this case, the number of significant features is too low. Just two methods were able to fit
a model. BSWiMS and LASSO. The other methods could not finish all the iterations, which
makes it impossible to determine a final model through RHOCV. We will only report the
results of the models that could finish the iterations.

BSWiMS selected just 3 real features, but just two in all the cases. Lesions and surgeries
were the only features used in all the iterations. The offensive rating was used just in two
iterations. Two random variables were also used but just 3 times accumulated. The other real
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features were ignored. On average it used just 2.25 features to build the model with a Jaccard
Index of 0.84. BSWiMS take a mean of 0.96635 seconds to create the model on each iteration.
Model I got ACC = 0.677 (0.647, 0.706), AUC = 0.73 (0.69, 0.76), SEN = 0.67 (0.63, 0.71),
SPE = 0.68 (0.64, 0.73), CIRisks = 0.70 (0.68, 0.71) and CIFU = 0.58 (0.56, 0.60).

The other method that works was LASSO. In this case, it selected a mean of 25.5 features
and its Jaccard Index was very low at 0.24. The only features selected in all the iterations were
real: Lesions, Offensive rating and Surgeries. Ten random features were used in more than
half of the models. This time, LASSO took 38.86 seconds on average to build the model.
LASSO got ACC = 0.67 (0.64, 0.70), AUC = 0.74 (0.71, 0.77), SEN = 0.68 (0.63, 0.71), SPE
= 0.68 (0.63, 0.72), CIRIsks = 0.71 (0.69, 0.72) and CIFU = 0.75 (0.73, 0.76).

4.1.2 11 variables
The second section simulate the survival information with 11 outcome related features. 7 Nor-
mal distributed features were added to the four already described: Body mass index (BMI),
Age (age), Games played (games), Average minutes played in the season before (minutes),
Mean of assists (AST), Field Goal Percentage (FGP) and Blocks per game (BPG). The status
and the event time were simulated with an R script that considered the hazard and survival
probability of each subject in each period of time. Using the 11 real features we create the
probability of each player to survive a period of time. The simulation tuns a random number
to decide if the player retire or keeps playing in the season or if he had to be censored. 450
players have the event and the 550 remaining are censored.

Method ACC
(95% CI)

AUC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.71
(0.68,0.74)

0.79
(0.76,0.82)

0.71
(0.67,0.75)

0.71
(0.66,0.75)

0.67
(0.65,0.69)

0.47
(0.44,0.5)

II 0.72
(0.69,0.74)

0.79
(0.77,0.82)

0.72
(0.68,0.76)

0.71
(0.66,0.75)

0.67
(0.66,0.69)

0.53
(0.5,0.56)

III 0.71
(0.68,0.74)

0.79
(0.76,0.82)

0.71
(0.67,0.75)

0.71
(0.66,0.75)

0.67
(0.66,0.69)

0.53
(0.5,0.55)

IV 0.71
(0.68,0.74)

0.79
(0.76,0.82)

0.71
(0.67,0.75)

0.71
(0.66,0.75)

0.67
(0.66,0.69)

0.53
(0.5,0.56)

V 0.71
(0.68,0.74)

0.79
(0.77,0.82)

0.71
(0.67,0.75)

0.7
(0.66,0.75)

0.67
(0.66,0.69)

0.45
(0.43,0.48)

VI 0.72
(0.69,0.75)

0.8
(0.77,0.82)

0.72
(0.68,0.76)

0.71
(0.67,0.76)

0.67
(0.66,0.69)

0.46
(0.43,0.49)

VII 0.72
(0.69,0.74)

0.8
(0.77,0.82)

0.72
(0.68,0.75)

0.71
(0.67,0.76)

0.67
(0.66,0.69)

0.46
(0.43,0.49)

Table 4.4: Classification and survival stats for wrapper methods in the Simulation experiment
of 21 features (11 real - 10 random). I = BSWiMS, II = LASSO, III = RIDGE, IV = ELAS-
TICNET, V = GSPDAS (BESS), VI = SPDAS (BESS.SEQUENTIAL), VII = SPDAS.BIC
(BESS.SEQUENTIAL.BIC). Best scores for each stat are bolded.
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21 features (11 real - 10 random)

We added 10 random features (50% of normal and 50% binomial random distributed vari-
ables) to test the CoxBenchmarking process. The first model was developed with BSWiMS
which selected a mean of 4.50 features with a Jaccard Index of 0.67. Of those selected features
3 real features were selected in all the iterations, Lesions, surgeries and Block per game. Four
other real features Field goal percentage, Defensive Rating, Ofensive Rating and age were
selected in less than the half of the models. Games and minutes were completely ignored in
the models that BSWiMS made. Model I finished with an ACC = 0.71 (0.68,0.74), AUC =
0.79 (0.76,0.82), SEN = 0.71 (0.67,0.75), SPE = 0.71 (0.66,0.75), CIRisks = 0.67 (0.65,0.69)
and CIFU = 0.47 (0.44,0.5). Model II uses LASSO and it selected a mean of 12.35 features
with a Jaccard Index of 0.62. 7 of the eleven real features were selected the 100% of the
times. Block per game, Lesions, Surgeries, FGP, DRtg, ORtg, AGE. BMI was selected a
fraction of the iterations (0.90). Assists per game were selected just 5 iterations. Games and
minutes were selected in less than 4 models. All the random variables were selected ranging
from (0.6-0.15). LASSO got ACC =0.72 (0.69, 0.74), AUC =0.79 (0.77, 0.82), SEN =0.72
(0.68, 0.76), SPE = 0.71 (0.66, 0.75), CIRisks=0.67 (0.66, 0.69) and CIFU = 0.53 (0.5, 0.56).
Model 3 and 4 are the same models but built with different methods. Model 3 uses RIDGE
and Model 4 ELASTICNET. Both models selected a mean of 20.95 (all) with a Jaccard Index
of 0.995. As the numbers tell, all the features were used and just the minutes variable were
not selected in one of the models. Both methods finished with ACC =0.71(0.68,0.74), AUC
=0.79(0.76,0.82), SEN =0.71(0.67,0.75), SPE=0.71(0.66,0.75), CIRisks=0.67(0.66,0.69) and
CIFU = 0.53 (0.5,0.55).

Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.71
(0.68,0.74)

0.71
(0.67,0.75)

0.71
(0.66,0.75)

0.47
(0.44,0.5)

0.47
(0.44,0.5)

II 0.7
(0.68,0.73)

0.71
(0.67,0.75)

0.7
(0.65,0.74)

0.46
(0.43,0.49)

0.46
(0.43,0.49)

III 0.71
(0.68,0.74)

0.71
(0.67,0.75)

0.7
(0.66,0.75)

0.45
(0.43,0.48)

0.45
(0.43,0.48)

IV 0.72
(0.69,0.74)

0.72
(0.68,0.76)

0.71
(0.66,0.75)

0.46
(0.43,0.48)

0.46
(0.43,0.48)

Table 4.5: Classification and survival stats for filter methods with 11 real features and 10
random variables. I = Cox with BSWiMS, II = Cox with LASSO, III = Cox with BESS IV =
Univariate Cox. Best scores for each stat are bolded.

Model V which uses BeSS’s GSPDAS selected a mean of 11.30 features with a Jaccard
Index of 0.65. BeSS selected the same real features in the 100% of the iterations. Assists just
in 25% of the models and games and minutes just in two models. GSPDAS resulted in ACC
= 0.71 (0.68, 0.74), AUC = 0.79 (0.77, 0.82), SEN = 0.71 (0.67, 0.75), SPE = 0.7 (0.66, 0.75),
CIRisks = 0.67 (0.66, 0.69) and CIFU = 0.45 (0.43, 0.48). SPDAS is also named as Model
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VI. It selected 6.40 features on average with a Jaccard Index 0.79. Blocks per game, Lesions,
Surgeries and Defensive Rating were selected in the 20 iterations. Offensive rating, field goals
percentage, and age were used in more than half of the iterations and the last used feature was
BMI with 5 selections. Model VI got ACC = 0.72 (0.69, 0.75), AUC = 0.8 (0.77, 0.82), SEN
= 0.72 (0.68, 0.76), SPE = 0.71 (0.67, 0.76), CIRisks = 0.67 (0.66, 0.69) and CIFU = 0.46
(0.43, 0.49). Model VII uses SPDAS with BIC criterion. It selected a mean of 6.20 features
on average with a Jaccard Index of 0.76. Three real features were selected in all the iterations.
All the other real features were used in more than half of the iterations excluding games and
minutes which were ignored.

Figure 4.4: KM and ROC Curves for wrappers methods in the Simulation experiment with
21 features. (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS (BeSS) (f)
SPDAS (g) SPDAS with BIC
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Figure 4.5: KM and ROC Curves for filters methods in the Simulation experiment with 21
features (a) BSWiMS with Cox (b) LASSO with Cox (c) GSPDAS with Cox (d) Univariate
Cox Analysis

101 features (11 real - 90 random)

In this experiment the same number of real features were used. We used 90 random vari-
ables (50% of normal and 50% binomial random distributed variables) to the dataset to test
the CoxBenchmarking process. The first Model, again BSWiMS selected 4.70 features on
average. Its Jaccard Index is 0.64. Eleven features were used in total, four of them were ran-
dom numbers. Of the remaining seven, three were selected in every single model. Surgeries,
Blocks and Lesions. Defensive Rating, FGP, Offensive Rating and age were selected from
0.65-0.15%. BSWiMS reported ACC = 0.71 (0.68, 0.74), AUC = 0.78 (0.76, 0.81), SEN =
0.72 (0.68, 0.75), SPE = 0.71 (0.67, 0.75), CIRisks = 0.67 (0.65, 0.68) and CIFU = 0.48 (0.45,
0.51). Model II uses LASSO and selected 21.70 features on average with a Jaccard index is
0.47. Seven features were selected in all the 20 iterations, 6 of them are real features. Surg-
eries, Blocks, Lesions, Defensive Rating, Field Goal Percentage and age. The other feature
selected in 100% of the models was random. Offensive Rating was used on 19 out the 20
iterations and BMI was used in 10 models. Lasso finished with ACC =0.72 (0.69, 0.75), AUC
= 0.79 (0.76, 0.82), SEN = 0.72 (0.69, 0.76), SPE = 0.72 (0.67, 0.76), CIRisks = 0.67 (0.65,
0.68) and CIFU = 0.58 (0.55, 0.61). Model III and IV got the same statistical results but the
number of features selected and the Jaccard Index is different. The RIDGE method selected a
mean of 99.95 and a Jaccard Index of 0.94 and ELASTICNET selected 100.10 characteristics
with a Jaccard index of 0.95. Both methods select all the real features in all the models. Their
stats were ACC = 0.71(0.68, 0.74), AUC = 0.76 (0.73, 0.79), SEN = 0.71 (0.67, 0.75), SPE =
0.7 (0.66, 0.75), CIRisks = 0.65 (0.64, 0.67) and CIFU = 0.67 (0.64, 0.69).
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Method ACC
(95% CI)

AUC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.71
(0.68,0.74)

0.78
(0.76,0.81)

0.72
(0.68,0.75)

0.71
(0.67,0.75)

0.67
(0.65,0.68)

0.48
(0.45,0.51)

II 0.72
(0.69,0.75)

0.79
(0.76,0.82)

0.72
(0.69,0.76)

0.72
(0.67,0.76)

0.67
(0.65,0.68)

0.58
(0.55,0.61)

III 0.71
(0.68,0.74)

0.76
(0.73,0.79)

0.71
(0.67,0.75)

0.7
(0.66,0.75)

0.65
(0.64,0.67)

0.67
(0.64,0.69)

IV 0.71
(0.68,0.74)

0.76
(0.73,0.79)

0.71
(0.67,0.75)

0.7
(0.66,0.75)

0.65
(0.64,0.67)

0.67
(0.64,0.7)

V 0.7
(0.68,0.73)

0.77
(0.74,0.8)

0.71
(0.67,0.75)

0.7
(0.65,0.74)

0.66
(0.64,0.67)

0.47
(0.44,0.5)

VI 0.71
(0.68,0.74)

0.78
(0.76,0.81)

0.72
(0.68,0.75)

0.71
(0.66,0.75)

0.67
(0.65,0.68)

0.47
(0.45,0.5)

VII 0.71
(0.68,0.74)

0.79
(0.76,0.82)

0.71
(0.67,0.75)

0.72
(0.67,0.76)

0.67
(0.65,0.69)

0.47
(0.44,0.5)

Table 4.6: Classification and survival stats for wrapper methods in the Simulation experiment
of 21 features (11 real - 100 random). I = BSWiMS, II = LASSO, III = RIDGE, IV = ELAS-
TICNET, V = GSPDAS (BESS), VI = SPDAS (BESS.SEQUENTIAL), VII = SPDAS.BIC
(BESS.SEQUENTIAL.BIC). Best scores for each stat are bolded.

Model V uses GSPDAS and chose a mean of 58.20 features with a Jaccard index of 0.45.
This was a special case, just surgeries variable was used in all the models. But 8 variables
were used in 19 models. Of them, 5 variables were real: Blocks, Lesions, Defensive Rating,
Field Goal Percentage, age. Offensive rating and BMI were used in 18 iterations, AST in
16, minutes in 10 and games in 5. BeSS finished an ACC = 0.7 (0.68,0.73), AUC = 0.77
(0.74, 0.8), SEN = 0.71 (0.67, 0.75), SPE = 0.7 (0.65, 0.74), CIRisks = 0.66 (0.64, 0.67) and
CIFU = 0.47 (0.44, 0.5). Model VI uses SPDAS algorithm selecting an average 4.90 with
a Jaccard Index of 0.64. Surgeries, Lesions and Blocks were used in every single iteration.
Eight extra features were used in the models, the half of them are real: Deffensive rating, FGP,
Offensive rating and age. All the other real features were completly ignored. SPDAS finished
with ACC = 0.71 (0.68, 0.74), AUC = 0.78 (0.76, 0.81), SEN = 0.72 (0.68, 0.75), SPE = 0.71
(0.66, 0.75), CIRisks = 0.67 (0.65, 0.68) and CIFU = 0.47 (0.45, 0.5). Finally, SPDAS with
BIC criterion selected a mean of 6.40 features with a Jaccard Index of 0.57. Just ass the last
method, it selected the three same real features in all the models. The main difference is that
this method selected a total 18 features in the models. The final model finished with ACC =
0.71 (0.68, 0.74), AUC = 0.79 (0.76, 0.82), SEN = 0.71 (0.67, 0.75), SPE=0.72 (0.67, 0.76),
CIRisks = 0.67 (0.65, 0.69) and CIFU = 0.47 (0.44, 0.5).



88 CHAPTER 4. EXPERIMENT RESULTS

Figure 4.6: KM and ROC Curves for wrappers methods in the Simulation experiment with
101 features (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS (BeSS) (f)
SPDAS (g) SPDAS with BIC
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Figure 4.7: KM and ROC Curves for filter methods in the Simulation experiment with 101
features (a) BSWiMS with Cox (b) LASSO with Cox (c) GSPDAS with Cox (d) Univariate
Cox Analysis

Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.71
(0.68,0.74)

0.72
(0.68,0.75)

0.71
(0.67,0.75)

0.48
(0.45,0.51)

0.48
(0.45,0.51)

II 0.72
(0.69,0.75)

0.71
(0.67,0.75)

0.73
(0.69,0.77)

0.47
(0.44,0.49)

0.47
(0.44,0.49)

III 0.7
(0.68,0.73)

0.71
(0.67,0.75)

0.7
(0.65,0.74)

0.47
(0.44,0.5)

0.47
(0.44,0.5)

IV 0.71
(0.68,0.74)

0.72
(0.68,0.75)

0.71
(0.66,0.75)

0.48
(0.45,0.5)

0.48
(0.45,0.5)

Table 4.7: Classification and survival stats for filter methods with 11 real features and 100
random variables. I = Cox with BSWiMS, II = Cox with LASSO, III = Cox with BESS IV =
Univariate Cox. Best scores for each stat are bolded.

1001 features (11 real - 990 random)

Like happened in the past experiment with more than 1000 variables. The only features that
were used in all the iterations were real: Lesions and surgeries. But in this case, BSWiMS
selected also Blocks and Defensive Rating with 19 and 5 selections respectively. FGP was
selected just one time and two random features were also selected. It used a mean of 3.4
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features with a Jaccard Index of 0.79. The time that BSWiMS took was 1.12 s on average. It
finished with an ACC = 0.71 (0.68, 0.73), AUC = 0.78 (0.75, 0.81), SEN = 0.71 (0.67, 0.75),
SPE = 0.70 (0.65, 0.74), CIRisks = 0.67 (0.65, 0.68) and CIFU = 0.48 (0.45, 0.51).

LASSO selected a mean of 31.4 features with a low Jaccard Index of 0.23. Blocks,
Defensive Rating, Lesions, and Surgeries were used in every single iteration. Age in 18
models, FGP in sixteen times, Offensive Rating in 12; and finally, BMI in 4 models. Five
random features were used in more than half of the iterations. LASSO got an ACC = 0.71
(0.68, 0.73), AUC = 0.78 (0.76, 0.81), SEN = 0.70 (0.66, 0.74), SPE = 0.71 (0.66,0.75),
CIRisks = 0.67 (0.65, 0.68) and CIFU = 0.65 (0.63, 0.68).

Figure 4.8: KM and ROC Curves for wrappers methods with the 11 real features and 990
random created with (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSPDAS
(BeSS) (f) SPDAS (g) SPDAS with BIC
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4.2 TADPOLE-ADNI
Discovering, characterizing and validating imaging-biomarkers associated with AD requires
a well-designed study. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large
study aimed to discover and test novel imaging-biomarkers [27]. ADNI has generated hun-
dreds of research papers in this area, but most of them have used supervised classifications or
statistical approaches for the characterization of MCI patients that presented with AD conver-
sion. These research papers have been useful in discovering early imaging findings, but most
of them have not evaluated effectively the time to AD conversion in their discovery efforts
[28]–[30]. In this case, this thesis supported two experiments to discover how imaging data
can be used to predict the conversion. Both analyses were developed with the CoxBenchmark-
ing method. The first of the experiments was performed with the first version of CoxBench-
marking. The results with this version report the statistics only of the default methods of each
of the packages. Experiment number two uses the final version of CoxBenchmarking and
returns to the experimentation with the first data set, which is subsequently compared with
clinical information from CSF measures and Cognitive Assessments.

Method FS
(JI)

C-Index
Follow Up
(95% CI)

LogRank
pvalue

AUC
(95% CI)

ACC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

LASSO
(Coxnet)

W 24.40
(0.31)

0.84
(0.82-0.86) 3.33x10-16 0.73

(0.68-0.78)
0.68

(0.64-0.72)
0.69

(0.62-0.76)
0.68

(0.62-0.74)

F
0.72

(0.69-0.74) 3.73x10-13
0.72

(0.68-0.77)
0.67

(0.62-0.72)
0.66

(0.59-0.73)
0.67

(0.61-0.72)

BSWiMS
W 12.75

(0.34)

0.81
(0.79-0.83) 1.58x10-14

0.73
(0.68-0.78)

0.67
(0.63-0.72)

0.69
(0.61-0.75)

0.67
(0.61-0.72)

F
0.74

(0.71-0.76) 8.10x10-15
0.73

(0.68-0.77)
0.67

(0.63-0.72)
0.67

(0.60-0.74)
0.67

(0.61-0.73)

BeSS W
52.85
(0.21)

0.63
(0.60-0.66) 1.99x10-10

0.68
(0.63-0.73)

0.62
(0.58-0.67)

0.61
(0.54-0.68)

0.63
(0.57-0.69)

Univariate
Cox F

101.30
(0.67)

0.67
(0.64-0.70) 6.39x10-11

0.67
(0.62-0.72)

0.63
(0.58-0.67)

0.61
(0.54-0.68)

0.64
(0.57-0.69)

Table 4.8: Models predictions statistics. contains c-index of follow-up times predictions,
the p-value on log rank test between low-high risk curves, area under the curve, accuracy,
sensitivity and specificity with their 95% confidence intervals. W=Wrappers, F=Filters, FS =
Feature Size, JI = Jaccard Index. Best scores for each stat are bolded.

4.2.1 Survival Models Associated with MCI to AD Conversion with qMRI
features

Table 4.8 shows the main results of the RHOCV on the six tested models. We report the
major findings per method and all the performance statistics with 95% CI. The BSWiMS
strategy selected the smallest models. They contained an average of 13 features with an
average Jaccard index of 0.34. The mean volume of the amygdala and entorhinal and the
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mean cortical thickness average of bankssts were selected on every iteration. The BSWiMS
model had c-index of 0.81 (0.79-0.83) with ACC = 0.67 (0.63, 0.71), SEN = 0.69 (0.61, 0.75),
SPE = 0.67 (0.61,0.72), and AUC = 0.73 ( 0.68, 0.78). The Cox Modeling based on BSWiMS
reported the following classification performance: ACC = 0.67 (0.63, 0.72), SEN = 0.67 (0.60,
0.74), SPE = 0.67 (0.61, 0.73), and AUC = 0.73 (0.68, 0.77). Hence BSWiMS models were
very similar to CoxPH fitted model. Figure 4.9(a) shows the Kapplan-Meier curves of the
subjects predicted at risk of conversion vs the subjects predicted as stable for the Cox model
created by BSWiMS features.

Figure 4.9: Kaplan Meier (KM) and ROC curves for wrappers/embedded section. CoxNet
showed the best accuracy on the classification and the best c-index on Risk and Follow-up
times. (a) Model 1 BSWiMS KM (b) CoxNet KM (c) BeSS KM (d) BSWiMS ROC (e)
CoxNet ROC (f) BeSS ROC

The CoxNet/LASSO method generated models with an average set of 24 features with
a Jaccard index of 0.28. The most common features were APOE4, the mean cortical thick-
ness average of Bankssts and the mean volume (cortical parcellation CP) of entorhinal. 75%
of the repetitions selected the mean volume (cortical parcellation) of inferior temporal, the
absolute difference of cortical thickness average of par s opercularis, the mean volume (WM
parcellation) of the amygdala and the mean cortical thickness standard deviation of bankssts.
This model reported c-index = 0.84 (0.82-0.86), ACC = 0.68 (0.64, 0.73), SEN = 0.69 (0.62,
0.76), SPE = 0.68 (0.62, 0.74), and AUC = 0.73 (0.68, 0.78). The Cox regression models
fitted with LASSO features returned the following performance: ACC = 0.67 (0.62, 0.71),
SEN = 0.66(0.59, 0.73), SPE = 0.67 (0.60, 0.72) and AUC = 0.72 (0.68, 0.77). These results
indicate that CoxPh performance is lower than L1 fitted model, implying that L1 penaliza-
tion helped in improving the prediction of which subjects converted. Figure 4.9(b) shows the
Kapplan-Meier curves. The BeSS method returned on average models with 53 features with a
Jaccard index of 0.21. Three features were selected on every single repetition: APOE4, mean
cortical thickness standard deviation of bankssts and mean volume (cortical parcellation) of
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entorhinal.

Variable FT MT Event
Mean(SD)

No event
Mean (SD)

MV HR
(95% CI)

UV HR
(95% CI) M1 M2 M3 M4

CP
entorhinal M V 1783.72

(426.17)
1535.31
(423.91)

0.63***
(0.50,0.80)

0.47****
(0.39,0.57) 1 1 1 1

WMP
amygdala M V 1247.77

(280.46)
1053.28
(276.06)

0.88*
(0.69,1.13)

0.50****
(0.41,0.60) 2 5 12 2

CP
inferior

temporal
M V 9681.64

(1617.63)
8896.89

(1803.11)
0.79α

(0.62,1.00)
0.49****

(0.40,0.61) 17 4 20 3

AVG
Bankssts M CT 2.39

(0.21)
2.27

(0.23)
0.76*

(0.60,0.97)
0.54****

(0.45,0.67) 3 2 63 6

APOE4 P G NA NA
1.74****

(1.40,2.17)
1.83****

(1.50,2.24) 5 3 2 8

SD
Bankssts M CT 0.51

(0.08)
0.54

(0.08)
1.60**

(1.20,2.12)
1.74****

(1.35,2.24) 4 6 3 25

AVG
pars

opercularis
A CT 2.38

(0.18)
2.29

(0.20)
1.46**

(1.09,1.94)
1.76***

(1.32,2.36) 39 7 17 32

AVG
inferior
parietal

A CT 2.25
(0.19)

2.15
(0.21)

1.33*
(1.04,1.69)

1.5**
(1.17,1.92) 42 9 13 47

AVG
middle

temporal
A CT 2.70

(0.21)
2.56

(0.23)
1.38*

(1.07,1.78)
1.52**

(1.17,1.97) 21 11 14 50

SD
Rostral
middle
frontal

M CT 0.62
(0.05)

0.61
(0.048)

0.63***
(0.50,0.81)

0.80*
(0.64,0.98) 34 13 5 76

Table 4.9: Characteristics and ranking of ten features selected in almost the half of the it-
erations. The ranking was ordered based on the number of times selected and then ordered
depending on the p-value of univariate cox analysis. [FT = feature type; M=mean, P= poly-
morphism, A=absolute difference], [MT = measure type; V=volume (mm3), G = gene, M
= cortical thickness (mm)], [M1 = BSWiMS, M2 = COXNET/LASSO, M3 = BeSS, M4 =
Univariate Cox] P. Value significance: α < 0.1, * < 0.05, **< 0.01, ***< 0.001, ****
< 10−04

75% of the time the following 3 features were selected: mean cortical thickness standard
deviation of temporal pole, mean cortical thickness standard deviation of the rostral middle
frontal and mean surface area of cuneus. BeSS models reported c-index = 0.63 (0.60, 0.66),
ACC = 0.63 (0.58, 0.67), SEN = 0.61 (0.54, 0.68), SPE = 0.63 (0.57, 0.69), and AUC = 0.68
(0.63,0.73). Finally, the models created by univariate Cox filter were the largest. The average
size of the models included 103 elements with a Jaccard index of 0.65. 54 features were
selected in all the iterations. Among the selected features were APOE4, the mean cortical
thickness average of Parahippocampal, the cortical thickness average and the volume (cortical
parcellation) of pars opercularis. Classification performance of univariate filter were: ACC =
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0.63 (0.58, 0.67), SEN = 0.61 (0.54,0.68), SPE = 0.64 (0.57,0.69) and AUC = 0.67 (0.62,0.72).
Hence the Cox models based on simple univariate filter had the least robust performance.
Figure 4.9 and Figure 4.10 show the complete Kapplan-Meier curves and the ROC plots based
on the median estimations for ML-methods and filter-based-methods.

Figure 4.10: Kaplan Meier (KM) and ROC curves for filters section. Cox Model build with
BSWiMS features showed the best accuracy on the classification and the best c-index on Risk
and Follow-up times. (a) Model 4 Cox with BSWiMS KM (b) Cox with BSWiMS ROC (c)
Model 5 Cox with CoxNet KM (d) Cox with CoxNet ROC (e) Model 6 Cox with Univariate
Cox KM (f) Cox with Univariate Cox ROC

We performed a detailed analysis of the set of selected features across ML methods.
The analysis of the RHOCV reported that ten features were common on 50% of the sets.
To evaluate the importance of these ten features as a risk factor for MCI to AD conversion,
we refit the Cox model using these ten features. We then reported the hazard ratios (HR)
and their corresponding 95% CI: The mean volume (CP) of entorhinal HR = 0.63 (0.50,
0.80), mean cortical thickness SD of Bankssts HR = 1.60 (1.20,2.12), APOE4 HR = 1.74
(1.40,2.17), mean volume (WMP) of amygdala HR = 0.88 (0.69,1.13), mean cortical thickness
AVG of Bankssts HR = 0.76 (0.60,0.97), mean volume (CP) of inferior temporal HR = 0.79
(0.62,1.00), absolute difference cortical thickness AVG of middle temporal HR = 1.38 (1.07,
1.78), absolute difference of cortical thickness AVG of pars opercularis HR = 1.46(1.09, 1.94),
absolute difference cortical thickness average of inferior parietal HR = 1.33 (1.04, 1.70), mean
cortical thickness standard deviation of Rostral middle frontal HR = 0.64(0.50, 0.81). A
heatmap representation with the ten features correlation with the outcome can be found in
Figure 4.11. Table 4.9 provides more details of the ten characteristics. The last two columns
of table III shows the rank of the features of the four ML approaches. The MV HR and the
UV HR correspond to the Hazard ratios of the feature inside a Multivariate model and the
HR computed by the univariate approach respectively. It is clear that feature ranking and
importance depended on the ML method.
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Figure 4.11: A heat map representation of the features associated with MCI to AD conversion.
The figure shows the ten features selected by all the 4 methods in at least in the half of
the iterations (horizontal axis) and subjects on the vertical axis. (F1) Mean volume (CP) of
entorhinal, (F2) mean cortical thickness SD of Bankssts, (F3) APOE4, (F4) mean volume
(WMP) of amygdala, (F5) mean cortical thickness AVG of Bankssts, (F6) mean volume (CP)
of inferior temporal, (F7) absolute difference cortical thickness AVG of middle temporal, (F8)
absolute difference of cortical thickness AVG of pars opercularis, (F9) absolute difference
cortical thickness AVG of inferior parietal, (F10) mean cortical thickness SD of Rostral middle
frontal

4.2.2 Prediction of MCI to AD Risk of Conversion Survival Models:
qMRI vs CSF Measures and Cognitive Assessments

Table 4.11 shows main classification (ACC) and survival stats (c-index FT) for all the models
in Experiment I, II, III and VI. Some configurations were tested with all the 9 ML/SL different
strategies. In this section, we report the main findings in each group and the strategies explored
within the group. Considering just the CSF measures group (Experiment I), BSWiMS selected
a mean of 1.75 measures and a Jaccard index of 0.80. LASSO selected the smallest mean of
CSF measures with 2.95 and a JI of 0.97. selected 2.95 features and 0.96 JI. GPDAS chose
2 features on average with a Jaccard index of 0.77. Its version with sequential algorithm
and BIC adjusted selected 1.50 measures with 1 JI. RIDGE, SPDAS, and Unicox selected 3
features i.e. all of them, thus a Jaccard Index of 1. Since all the models almost selected all the
measures 100% of the time, the best performance was reported by RIDGE with 0.76 Follow
Up c-index and its 95% confidence interval (CI) of (0.74,0.79). Besides, the best c-index on
Risks was found by GPDAS as a filter with 0.75(0.72,0.78), Figure 4.12(a) shows the ROC
and Kaplan Meier curves for GPDAS as a filter model.
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Figure 4.12: KM and ROC Curves for (a) Experiment I model GPDAS as a filter c-index
Risks = 0.75 (0.72, 0.78), ACC = 0.67 (0.62, 0.71) (b) Experiment II model LASSO c-index
Risks =0.65(0.62, 0.67), ACC = 0.76 (0.72, 0.8) (c) Experiment III model BSWiMS as a
filter c-index Risks = 0.74 (0.72, 0.77), ACC = 0.67 (0.62, 0.71) (d) Experiment IV model
SPDAS.BIC c-index Risks = 0.67 (0.64, 0.70), ACC = 0.74 (0.7, 0.78) (e) Experiment V
model BSWiMS as a filter c-index Risks = 0.68 (0.65, 0.71), ACC =0.72 (0.68, 0.76)

The worst p-value found in the LogRank test was 3.34E-06 by SPDAS.BIC. With Cog-
assessments features (Experiment II) BSWiMS selected a mean of 4.30 and JI of 0.80. Just
two measurements were always selected: 13-tasks ADAS version and RAVLT immediate
score. FAQ and CDRSB were selected in more than 80% of the iterations; MMSE was never
selected. LASSO selected a mean of 4.30 Cog-assessments scores and 0.90 of JI. ADAS13,
FAQ, RAVLT immediate and CDRSB were selected in 100% of the iterations, ADAS11 was
not selected. RIDGE selected all the forms all the time. GPDAS has an average of 5.45
features and JI of 0.78. It selected the same features as LASSO in 100% of the cases. SPDAS
has an average of 4.35 and 0.85 JI. It selected ADAS13 and FAQ in 100% of the iterations
and RAVLT immediate and CDRSB in the 95% of them. The BIC version selected 4 features
on average and 0.76 of JI. Just ADAS13 was selected on all the occasions and FAQ, RAVLT
immediate and CDRSB were selected in more than 85%. Finally, the Univariate cox analysis
selected all features, but RAVLT forgetting score, were considered 100% of the times, the not
selected one was not chosen just in one of the iterations. mean of 4 features with a JI of 0.76.
Among this group, the best accuracy and area under the curve for this outcome were found.
LASSO reported the best c-index FT. The reported classifications stats are ACC = 0.76 (0.72,
0.8), AUC = 0.81 (0.76, 0.85), SEN = 0.76 (0.69, 0.82), SPE = 0.76 (0.7, 0.81) and survival
stats c-index FT = 0.69 (0.66, 0.72) and c-index Risks 0.65 (0.62, 0.67). Figure 4.12(b) shows
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the KM and ROC Curves for the LASSO model. All the p-values on the LogRank Test were
0.

Figure 4.13: KM and ROC Curves for all the models of Experiment IV (CSF Measures +
Cog-assessments + Radiomics). (a) BSWiMS Model [ACC = 0.76 (0.71, 0.8) c-index FT =
0.69 (0.66, 0.72) c-index Risks = 0.65 (0.63, 0.68)] (b) LASSO Model [ACC = 0.75 (0.71,
0.79) c-index FT = 0.77 (0.75, 0.79) c-index Risks = 0.66 (0.63, 0.69)] (c) RIDGE Model
[ACC = 0.71 (0.66, 0.75) c-index FT = 0.91 (0.89, 0.92) c-index Risks = 0.63 (0.61, 0.66)].
(d) GPDAS Model [ACC = 0.74 (0.69, 0.78) c-index FT = 0.59 (0.55, 0.62) c-index Risks =
0.65 (0.62, 0.68)]. (e) SPDAS Model [ACC = 0.76 (0.72, 0.8) c-index FT = 0.63 (0.6, 0.67)
c-index Risks = 0.66 (0.63, 0.68)].(f) SPDAS.BIC Model [ACC = 0.74 (0.69, 0.78) c-index
FT = 0.61 (0.58, 0.64) c-index Risks = 0.66 (0.63, 0.68)]

Using just Radiomics information (qMRI features + APOE4 + SEX) (Experiment III),
BSWiMS selected an average of 11.30 features and 0.29 JI. The mean volume of amygdala
was selected in all the iterations. Mean volume of entorhinal and mean cortical thickness of
averages and standard deviation of the Bankssts, APOE4 were selected in more of the 75% of
the iterations. Coxnet/LASSO chose 22.75 features on average and JI of 0.30. APOE4 and
mean volume cortical parcellation (CP) of entorhinal were always selected. In more than 75%
of the times, LASSO selected: Mean cortical thickness average of Bankssts, mean volume
(WM Parcellation) of amygdala, mean cortical thickness average of Pars Opercularis, mean
cortical thickness standard deviation of Bankssts and mean volume (Cortical Parcellation) of
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Inferior Temporal. RIDGE selected an average of 292.95 features with 0.89 of the Jaccard
index. Both methods chose 149 features in all the repetitions. GPDAS selected 52.60 features
and its JI was 0.21. Despite the big number of selections, just one feature was used all the
time, APOE4. Mean volume cortical parcellation (CP) of entorhinal, mean cortical thickness
standard deviation of Bankssts, mean surface area of cuneus, mean volume (CP) of Rostral
Anterior Cingulate, mean cortical thickness standard deviation of Temporal Pole and absolute
difference of volume (WM Parcellation) of Amygdala were selected in at least the 75% of the
repetitions. SPDAS algorithm selected the smallest number of features with 4.85 and Jaccard
Index of 0.30. Mean volume (CP) of entorhinal was selected all the times and APOE4 at least
75% of the iterations. SPDAS.BIC selected 19.70 features on average with 0.22 JI. APOE4
and once again mean volume (CP) of entorhinal were selected in the 100% of the repetitions.
Finally, in this experiment, Univariate cox analysis selected a mean of 98.80 features with a
Jaccard index of 0.63. 45 features were selected all the time. Among all the models, RIDGE
had the best performance on the c-index of follow up times with 0.92 (0.91, 0.93) and its ACC
= 0.68 (0.63, 0.72). On the other hand, the best performance on c-index Risks was found with
BSWiMS as a filter with 0.74 (0.72, 0.77), KM and ROC Curves for this model are shown on
Figure 4.12(c). The smallest p-value found on the LogRank Test was 4.08E-10 in the Unicox
model.

Experiment IV uses information about Radiomics and Cog-assessments scores. BSWiMS
selected 10.70 features JI = 0.5174. It selected all the Cog-assessments except for MMSE and
RAVLT forgetting in all the iterations and mean volume (WM Parcellation) of Amygdala
in 75% of the times. LASSO selected 27.25 features with a JI of 0.36. It chose ADAS13,
CDRSBm FAQ, RAVLT immediate, APOE4, absolute difference of cortical thickness aver-
age of Superior frontal, and mean volume (CP) of inferior temporal. Absolute differences
in cortical Thickness SD of Lingual and volume (CP) of Pars Triangularis, and mean vol-
ume (CP) of Entorhinal were selected more than 15 times. RIDGE selected 290.60 features
with 0.86 JI. It selected 122 features including all the forms, all the time. GPDAS selected
52.70 features on average with JI=0.23. ADAS13, RAVLT immediate were selected 100% of
the cases. CDRSB, FAQ, APOE, mean cortical Thickness SD of Bankssts and TemporalPole,
absolute differences of volume (CP) of Pars Triangularis and Surface Area of Transverse Tem-
poral, mean volume (CP) of Caudal Middle Frontal and mean surface area of Cuneus were
selected more than 75% of the times. SPDAS chose 5.45 features with 0.46 JI. ADAS13 was
selected always and mean volume (CP) of Inferior Temporal, FAQ, RAVLT immediate were
selected more than 15 times. SPDAS.BIC selected 25.85 features with a JI of 0.27. ADAS13,
FAQ, RAVLT immediate were selected 100% of the time. Mean volume (CP) of Inferior
Temporal, absolute differences of volume (CP) of Pars Triangularis and surface area of Trans-
verse Temporal, and CDRSB were selected more than 75% of the iterations. Finally, Unicox
selected 105.50 05 features with 0.66 of JI. It selected 51 features all the time, including all
the forms. The model with the best performance on the c-index Follow-up Times was RIDGE
with 0.92 (0.91, 0.93) and the best c-index Risks was found with SPDAS.BIC 0.67 (0.64, 0.7).
SPDAS.BIC KM and ROC curves are shown on Figure4.12(d). All the p-values on LogRank
Test were zero.

Experiment V uses information about Radiomics and CSF measures. BSWiMS selected
an average of 5.40 features with 0.35 of JI. It selected Aβ1−42 all the times and mean volume
of entorhinal in the 75%. Coxnet/LASSO used 24.95 features with a JI of 0.29. Once again,
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the same features as BSWiMS were selected all the times, APOE4, the absolute difference
of cortical thickness average of pars opercularis, mean volume (CP) of inferior temporal and
mean cortical thickness average of bankssts. RIDGE and ELASTICNET used 293.60 fea-
tures with a Jaccard index of 0.88. They selected the three CSF Measures, APOE4 and 142
qMRI features. GPDAS selected 51.65 features with 0.18 of JI. Aβ1−42 and mean volume
of entorhinal all the iterations and APOE4 and other 3 qMRI features in at least 75% of the
cases. SPDAS algorithm just used 4.05 features with 0.43 of JI. The same two features were
selected 100% of the time. SPDAS.BIC has a mean of 18.40 features and 0.23 JI. Same both
features selected at 100% but the volume (CP) of rostral anterior cingulate join them in 75%
of the cases. Univariate cox selected a mean of 107.35 features with JI of 0.68, 52 features
were selected all the times, the three CSF Measures were included. Experiment V got the
best performance among all the experiments on the RIDGE method with a c-index Follow-up
times of 0.93 (0.91, 0.94) and its best performance on c-index Risks with 0.68 (0.65, 0.71)
in the model build that uses BSWiMS as a filter, whose KM and ROC curves are part of the
Figure4.12(e). The biggest p-value for the log-rank test was found on the GPDAS model with
1.41E-12.

Figure 4.14: A heat map representation of the features associated with MCI to AD conversion.
The figure shows the 8 features selected by all the 6 methods in at least in the half of the
iterations (horizontal axis) and subjects on the vertical axis. (F1) Aβ1−42, (F2) CDSRB, (F3)
RAVLT immediate, (F4) ADAS13, (F5) FAQ, (F6) Mean volume CP Inferior Temporal, (F7)
Mean volume CP Entorhinal, (F8) Mean cortical thickness SD Bankssts.

Finally, experiment number VI used the combination of all the feature groups (CSF
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Measures + Cog-assessments + Radiomics). Summary of c-index Follow-up Times and ACC
are shown in Table 4.11. Figure 4.13 shows KM and ROC curves for all the Wrapper models
in this experiment. BSWiMS selected a mean of 11.55 features with a Jaccard Index of 0.51.
Four features were used in every single iteration. 3 of them are Cog-assessments scores:
ADAS13, CDRSB, RAVLT immediate, and the remaining feature is the CSF Measure Aβ1−42

FAQ, ADAS11 and mean volume (WM Parcellation) of Amygdala were selected in the 75%
of the times.

V FT MT
Event
Mean
(SD)

No
event
Mean
(SD)

MV HR
(95% CI)

UV HR
(95% CI) M1 M2 M3 M4 M5 M6 M7

1 C S
1.85

(0.92)
1.25

(0.69)
1.40***

(1.20,1.60)
1.8****
(1.6,2) 3 4 4 2 3 2 4

2 C S
28.71
(8.04)

36.22
(10.39)

0.61***
(0.49,0.77)

0.45****
(0.37,0.54) 2 2 2 1 5 1 2

3 C S
20.68
(6.25)

14.44
(5.66)

1.60***
(1.30,1.90)

2.70****
(2.30,3.20) 1 1 1 3 2 6 1

4 C S
5.01

(4.65)
2.21
(3.3)

1.20*
(1.00,1.40)

1.60****
(1.40,1.80) 5 3 3 7 6 5 3

5 M V
1535.31
(423.91)

1783.72
(426.17)

0.79*
(0.63,0.99)

0.47****
(0.39,0.57) 6 5 5 8 7 8 5

6 P P
766.81

(715.52)
598.21

(666.43)
0.54***

(0.43,0.68)
0.44****

(0.35,0.55) 4 6 6 4 1 3 6

7 M V
8896.89
(1803.1)

9681.64
(1617.63)

0.63***
(0.50,0.79)

0.49****
(0.40,0.61) 8 7 7 6 4 4 7

8 M CT
0.54

(0.08)
0.51

(0.08)
1.40*

(1.10,1.90)
1.70****
(1.40,2.2) 7 8 8 5 8 7 8

Table 4.10: Characteristics and ranking of eight features selected in almost the half of the
iterations. The ranking was ordered based on the number of times selected, then ordered
depending on the p-value of univariate cox analysis and finally, the concordance index of the
univariate model. [FT = feature type; M=mean, C=Cog. Assessment, P=CSF Measure], [mt =
measure type; v=volume (mm3), p = protein, ct = cortical thickness (mm)], [M1 = BSWiMS,
M2 = LASSO, M3 = RIDGE, M4 = GPDAS, M5=SPDAS, M6=SPDAS.BIC, M7=Univariate
Cox] P. Value significance: < 0.1, * < 0.05, ** < 0.01, *** < 0.001, **** < 10−04

CoxNet/LASSO selected 29.90 features on average with a JI of 0.35. In this model,
the features used in the 100% of the cases are more group variant than in the other models:
Aβ1−42, ADAS13, CDRSB, FAQ, RAVLT immediate, mean volume (CP) of Entorhinal and
volume (CP) of Inferior Temporal. Four qMRI features were selected in the 75% of the cases
(absolute differences of cortical thickness average of superior frontal, cortical thickness stan-
dard deviation of left lingual, cortical thickness average of Pars opercularis, and volume (CP)
of pars triangularis. RIDGE selected 294.45 features on average with 0.96 JI. 143 features
were selected for all the iterations, all the CSF Measures and Cog-assessments were included
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in this group. GPDAS selected 52.60 features with a Jaccard Index of 0.25. Among the fea-
tures used in the 20 iterations are Aβ1−42, CDRSB, RAVLT immediate and absolute difference
of volume (CP) of Pars Triangularis.

Conversion Accuracy Concordance Conversion Time

M MT I II III VI I II III VI

1 W 0.67 0.74 0.66 0.76** 0.75 0.68 0.81 0.69

F 0.67 0.76 0.67 0.76** 0.75 0.66 0.74 0.63

2 W 0.67 0.76 0.68 0.75 0.74 0.69 0.84 0.77

F 0.67 0.76 0.69 0.76 0.73 0.67 0.72 0.63

3 W 0.66 0.75 0.68 0.71 0.76 0.69 0.92 0.91

4 W 0.67 0.76 0.64 0.74 0.75 0.66 0.63 0.59

F 0.67 0.72 0.64 0.74 0.75 0.66 0.63 0.59

5 W 0.67 0.76 0.68 0.76 0.73 0.66 0.74 0.63

6 W 0.69 0.76* 0.67 0.74 0.72 0.67 0.69 0.61

7 W 0.67 0.76 0.63 0.70 0.73 0.66 0.67 0.61

Table 4.11: Main classification (Accuracy ACC) and survival stats (c-index FT) for all the
models on Experiments I, II, III, and VI. The complete stats for all the experiments are shown
in the Table 4 at the appendix section. Bold number on each column indicates the best stat
on that specific experiment. Tiebreakers were performed by the AUC value and 95%CI,
*AUC =0.81(0.77,0.85), **AUC =0.84(0.81,0.88). M = Models (1=BSWiMS, 2=LASSO,
3=RIDGE, 4=GPDAS, 5=SPDAS, 6=SPDAS.BIC, 6=Univariate Cox analysis). MT = Model
Type (W = Wrapper, F=Filter). I = CSF Measures. II = Cog-assessments. III = Radiomics.
VI = CSF Measures + Cog-assessments + Radiomics.

Then, in at least 15 of the iterations ADAS13, FAQ, Absolute differences of the surface
area of Transverse Temporal, cortical thickness average of Superior Temporal, and cortical
thickness standard deviation of Left Lingual, Mean of cortical thickness standard deviation of
Bankssts, and surface area of Cuneus. SPDAS chose 6.45 features on average with a Jaccard
index of 0.50. Any feature was selected every single iteration, but Aβ1−42, ADAS13, CDRSB,
RAVLT immediate and mean volume (CP) of Inferior Temporal were selected in at least 75%
of the times. SPDAS.BIC selected 21.95 features with a Jaccard Index of 0.28. Aβ1−42,
CDRSB, RAVLT immediate were selected in all the cases. ADAS13, FAQ, mean volume (CP)
of inferior temporal, absolute difference of volume (CP) of Pars Triangularis were selected
more than 15 times. Finally, Unicox analysis selected a mean of 116.50 features with a JI
of 0.69. 61 features were selected every time, all the CSF Measures and Cog-assessments
scores are part of this list. The best performance of the Follow-up Times c-index was found
on the RIDGE model with 0.91(0.89,0.92), but Coxnet/LASSO found a better performance
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over c-index Risks. LASSO reported an ACC = 0.75(0.71,0.79), AUC =0.84(0.81,0.88), SEN
= 0.75(0.69,0.81), SPE = 0.75(0.70,0.80), c-index Follow-up Times = 0.77(0.75,0.79) and
c-index Risks = 0.66(0.63,0.69). All the p-values on the Log-rank test were zero.

We performed a detailed analysis of the set of selected features across ML methods.
The analysis of the RHOCV reported that eight features were common on 50% of the sets. To
evaluate the importance of these features as a risk factor for MCI to AD conversion, we refit
the Cox model using them. We then reported the hazard ratios (HR) and their corresponding
95% CI: Aβ1−42: HR = 0.9989 (0.9984, 0.9993), CDRSB: HR = 1.45 (1.21,1.73), RAVLT
immediate: HR = 0.95 (0.93, 0.97), ADAS13: HR = 1.07 (1.04, 1.10), FAQ: HR = 1.04 (1.00,
1.08), mean volume (CP) of Inferior Temporal: HR = 0.63 (0.50, 0.79), mean volume (CP) of
Entorhinal: HR= 0.79 (0.63, 0.99), mean cortical thickness SD of Bankssts: HR= 1.42 (1.08,
1.86). A heatmap representation with the ten features correlation with the outcome can be
found in Figure 4.14. Table 4.10 provides more details of the ten characteristics. The last two
columns of Table 4.10 show the rank of the features of the 6 ML approaches. The MV HR
and the UV HR correspond to the Hazard ratios of the feature inside a Multivariate model and
the HR computed by the univariate approach respectively. It is clear that feature ranking and
importance depended on the ML method.

4.3 Osteoarthritis Initiative: OAI

Wrapper Methods

BSWiMS LASSO Ridge Elasticnet GSPDAS SPDAS SPDAS.BIC

ACC 0.81
(0.79, 0.84)

0.8
(0.77, 0.82)

0.82
(0.8, 0.85)

0.82
(0.8, 0.85)

0.78
(0.75, 0.8)

0.78
(0.75, 0.8)

0.78
(0.75, 0.81)

CIFT 0.73
(0.7, 0.76)

0.69
(0.65, 0.72)

0.79
(0.76, 0.82)

0.79
(0.76, 0.82)

0.66
(0.63, 0.69)

0.64
(0.6, 0.67)

0.63
(0.6, 0.66)

Filter Methods

Cox.BSWiMS Cox.LASSO Cox.GSPDAS UniCox

ACC 0.78
(0.75, 0.8)

0.8
(0.77, 0.82)

0.78
(0.75, 0.8)

0.76
(0.73, 0.78)

CIFT 0.85
(0.82, 0.88)

0.82
(0.79, 0.86)

0.66
(0.63, 0.7)

0.72
(0.69, 0.76)

Table 4.12: Main classification (Accuracy ACC) and survival stats (c-index FT) for all the
models with Wrapper and Filter Methods. The complete stats for all the models are shown in
the Table 4.13 for wrapper methods and Table for filter Methods. Best scores for each stat are
bolded.

Table 4.13 shows some stats for wrapper and filter methods methods in OAI and Table 4.12
summarizes the the classification and survival stats of the both strategies. BSWiMS selected
a mean of 76.30 features with a Jaccard Index of 0.59. It took 73.67 seconds to build each
model. Thirteen features were selected in every model and 64 were selected in more than half
of the iterations. The thirteen features are the following: Mean and absolute difference and
raw measure for Kellgren and Lawrence grades, calc of Function, Sports, and Recreational
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Activities Score of KOOS (KOOS Sports), grades for osteophytes femur lateral compartment),
mean of sclerosis grades for tibia medial compartment, KOOS Quality life and symptoms
score, osteophytes grades for femur medial compartment and sclerosis grade for tibia lateral
compartment.

Wrappers

ACC AUC SEN SPE CIRisks CIFU

BSWiMS
0.81

(0.79, 0.84)
0.84

(0.82, 0.87)
0.82

(0.78, 0.86)
0.81

(0.78, 0.84)
0.52

(0.5, 0.54)
0.73

(0.7, 0.76)

LASSO
0.8

(0.77, 0.82)
0.83

(0.81, 0.86)
0.85

(0.81, 0.89)
0.77

(0.74, 0.8)
0.52

(0.5, 0.55)
0.69

(0.65, 0.72)

Ridge
0.82

(0.8, 0.85)
0.85

(0.82, 0.87)
0.84

(0.79, 0.88)
0.82

(0.78, 0.84)
0.53

(0.5, 0.55)
0.79

(0.76, 0.82)

Elasticnet
0.82

(0.8, 0.85)
0.85

(0.82, 0.87)
0.84

(0.79, 0.88)
0.81

(0.78, 0.84)
0.53

(0.5, 0.55)
0.79

(0.76, 0.82)

GSPDAS
0.78

(0.75, 0.8)
0.8

(0.77, 0.83)
0.87

(0.83, 0.91)
0.74

(0.7, 0.77)
0.52

(0.5, 0.54)
0.66

(0.63, 0.69)

SPDAS
0.78

(0.75, 0.8)
0.81

(0.79, 0.84)
0.88

(0.83, 0.91)
0.73

(0.7, 0.77)
0.52

(0.5, 0.54)
0.64

(0.6, 0.67)

SPDAS.BIC
0.78

(0.75, 0.81)
0.82

(0.79, 0.84)
0.87

(0.83, 0.91)
0.74

(0.71, 0.77)
0.52

(0.5, 0.55)
0.63

(0.6, 0.66)

Filters

ACC AUC SPE SEN CIRisks CIFU

Cox.BSWiMS
0.78

(0.75, 0.8)
0.81

(0.78, 0.84)
0.86

(0.81, 0.89)
0.74

(0.71, 0.78)
0.85

(0.82, 0.88)
0.85

(0.82, 0.88)

Cox.LASSO
0.8

(0.77, 0.82)
0.83

(0.8, 0.85)
0.87

(0.82, 0.9)
0.77

(0.73, 0.8)
0.82

(0.79, 0.86)
0.82

(0.79, 0.86)

Cox.GSPDAS
0.78

(0.75, 0.8)
0.8

(0.77, 0.83)
0.87

(0.83, 0.91)
0.74

(0.7, 0.77)
0.66

(0.63, 0.7)
0.66

(0.63, 0.7)

UniCox
0.76

(0.73, 0.78)
0.77

(0.74, 0.8)
0.86

(0.82, 0.9)
0.71

(0.68, 0.75)
0.72

(0.69, 0.76)
0.72

(0.69, 0.76)

Table 4.13: Classification and survival stats for all the models with Wrapper and Filter Meth-
ods in the OAI analysis. Best scores for each stat are bolded.

The Second method was created with LASSO strategy, it uses 31.45 features on average
with a low Jaccard index of 0.33. LASSO took a mean of 48.55s to build each model. In this
case, the number of features selected in all the iterations was just 4: mean and difference of
Kellgren and Lawrence grades, KOOS Sports, osteophytes grades for femur lateral compart-
ment. 20 features were selected in more than half of the times. The third model, developed
with RIDGE strategy selected a mean of 214 features with a Jaccard Index of 0.84. The mean
time used to build each model was 3.45 seconds. Besides its big number of selected features,
just 105 features were selected in all the iterations and 120 more were chosen in more than
half of the repetitions. Fourth model uses ELASTICNET that is almost the same than the
third one. It selected the same amount of features in more than the half of the times but it
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chose eleven more features in all the iterations. ELASTICNET took 3.56 seconds on average
to build the model of 216.05 features with a Jaccard index of 0.86.

The fifth model uses GSPDAS algorithm by BeSS. It selected 39.45 features on average
for each model and finishes with a Jaccard Index of 0.22. It only took a mean 4.95 seconds to
build each model. It just used one feature in all the models, the mean of the grades of Kellgren
and Lawrence (KL). Two other features were used in more than the half of iterations KOOS
Sports and the difference between Kellgren and Lawrence scores in the both knees. Sixth
model also uses BeSS but this time with SPDAS algorithm.

Figure 4.15: A heat map representation of the features associated with TKR outcome on OAI
patients. The figure shows the 15 features selected by all the 8 methods (Seven wrappers and
Unicox) in at least in the half of the iterations (horizontal axis) and subjects on the vertical
axis. (F1) Mean KL, (F2) Absolute difference KL, (F3) KOOS Sports, (F4) absolute differ-
ence osteophytes grades of femur lateral compartment, (F5) absolute difference lateral tibial
plateau margin, (F6) Mean osteophytes grades of femur lateral compartment, (F7) absolute
difference medial minimum JSW, (F8) Mean sclerosis grades tibia medial compartment, (F9)
mean x coordinate of minimum JSW, (F10) KOOS Quality of life, (F11) absolute difference
of FTA, (F12) raw feature osteophytes grades of femur medial compartment, (F13) absolute
difference sclerosis grades of femur medial compartment, (F14) Raw difference between po-
sition x=150 and x=850, (F15) Raw osteophytes grades femur lateral compartment.
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The main difference of the both results is the time that takes to build each model in
the repetitions which took 124.62s. 4.75 features were selected on average in each model
and the Jaccard Index of 0.43. It uses the same features than GSPDAS algorithm. SPDAS
with BIC criterion selected a mean of 9.35 features with 0.32 of Jaccard Index. In this case,
the same one feature was selected in all the iterations but 5 other features were used in the
half of the iterations: the difference between Kellgren and Lawrence grades, KOOS Sports,
osteophytes grades for femur lateral compartment, absolute difference lateral tibial plateau
margin and mean x coordinate of minimum JSW. Eight model uses Unicox analysis to study
the case. In this case, it uses 72.35 features with a Jaccard Index of 0.48. Just Kellgren and
Lawrence grades were used in all the repetitions. After all the iterations with all the models
we chose the group of features that were selected in more than the half of the iterations. We
build a Cox Model for those features to build a build a final Cox Model that studies the OAI
TKR outcome. In total, 160 repetitions were made. With their HR and 95%CI were selected
in more than 80 repetitions: Mean and absolute difference of Kellgren and Lawrence grades
HR = 1.41 (1.2, 1.67), KOOS Sports HR = 1.27 (1.05, 1.53), absolute difference HR = 0.98
(0.97, 0.99) and mean HR = 1 (0.4, 2.48) of osteophytes grades for femur lateral compartment
HR = 0.98 (0.8, 1.2), absolute difference lateral tibial plateau margin HR = 1.05 (0.87, 1.28),
difference between medial JSW between kness HR = 0.97 (0.8, 1.18), mean sclerosis grades
of tibia medial compartment HR = 1.14 (0.97,1.35) , mean x coordinate of minimum JSW
HR = 3.22 (0.38, 27.38), KOOS Quality of Life score HR = 1 (0.99, 1.01), absolute difference
femoral tibial angle (FTA) reading HR = 1.24 (1.15, 1.35), osteophytes grades of femur medial
compartment raw measure HR = 1.14 (0.95, 1.36), absolute difference sclerosis grades femur
medial compartment HR = 1.14 (0.95, 1.36), Difference between x position 150 and 850 for
JSW in the right knee HR = 1.04 (0.94, 1.15), osteophytes grades femur lateral compartment
raw measure in the left knee HR = 0.92 (0.69, 1.23). Figure 4.15 shows the relationship
heatmap of those characteristics with the outcome.

4.4 Prognostic Wisconsin Breast Cancer Database

In this case, we found some results similar to the ones in the literature. Table 4.14 shows the
Wrappers method’s results belong to its 95% confidence intervals (CI) for the Prognostic Wis-
consin Breast Cancer Database. Table 4.15 shows the results on filters. In the next paragraphs,
we will describe the models built, their stats and their 95% confidence intervals between
parenthesis (i.e xx(yy, zz)). The first of the models were analyzed with BSWiMS strategy. It
selected a mean of 4.25 features by iteration with a Jaccard index of 0.28. BSWiMS selected
seven features in more than half of the times, perimeter and radius of the third cell nucleus,
perimeter, and area of the first cell nucleus and the tumor size. Being the perimeter of the third
cell the most selected feature in 90% of the iterations. BSWiMS got ACC =0.64(0.57,0.7),
SEN =0.6(0.44,0.74), SPE=0.65(0.57,0.72) and C-Index FU 0.81(0.78,0.83). The cox model
created with the same features (The filter method with BSWiMS) uses the same number of
features but it got ACC =0.63(0.56,0.7), SEN =0.64(0.49,0.77), SPE=0.63(0.55,0.71) and C-
index on Risk and Follow-up Times of 0.74(0.7,0.78).
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Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.65
(0.58,0.72)

0.66
(0.51,0.79)

0.65
(0.57,0.72)

0.55
(0.5,0.6)

0.80
(0.77,0.83)

II 0.69
(0.62,0.76)

0.74
(0.6,0.86)

0.68
(0.59,0.75)

0.55
(0.5,0.6)

0.81
(0.78,0.84)

III 0.69
(0.62,0.76)

0.70
(0.55,0.83)

0.69
(0.61,0.76)

0.55
(0.5,0.6)

0.83
(0.8,0.86)

IV 0.68
(0.61,0.74)

0.70
(0.55,0.83)

0.67
(0.59,0.74)

0.55
(0.51,0.6)

0.83
(0.81,0.86)

V 0.66
(0.59,0.72)

0.70
(0.55,0.83)

0.64
(0.56,0.72)

0.46
(0.41,0.5)

0.69
(0.65,0.73)

VI 0.71
(0.64,0.77)

0.77
(0.62,0.88)

0.70
(0.62,0.77)

0.51
(0.46,0.56)

0.76
(0.73,0.79)

VII 0.71
(0.64,0.77)

0.77
(0.62,0.88)

0.70
(0.62,0.77)

0.51
(0.46,0.56)

0.76
(0.73,0.79)

Table 4.14: Classification and survival stats for filter methods that analyzed the Prognostic
Wisconsin Breast Cancer Database. I = BSWiMS, II = LASSO, III = RIDGE, IV = ELAS-
TICNET, V = GSPDAS (BESS), VI = SPDAS (BESS.SEQUENTIAL), VII = SPDAS.BIC
(BESS.SEQUENTIAL.BIC). Best scores for each stat are bolded.

Method ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

C-index Risks
(95% CI)

C-Index FU
(95% CI)

I 0.63
(0.56,0.7)

0.64
(0.49,0.77)

0.63
(0.55,0.71)

0.74
(0.7,0.78)

0.74
(0.7,0.78)

II 0.66
(0.59,0.73)

0.66
(0.51,0.79)

0.66
(0.58,0.74)

0.73
(0.69,0.77)

0.73
(0.69,0.77)

III 0.67
(0.6,0.74)

0.68
(0.53,0.81)

0.67
(0.59,0.74)

0.68
(0.64,0.73)

0.68
(0.64,0.73)

IV 0.63
(0.55,0.69)

0.66
(0.51,0.79)

0.62
(0.53,0.69)

0.72
(0.68,0.76)

0.72
(0.68,0.76)

Table 4.15: Classification and survival stats for filter methods that analyzed the Prognostic
Wisconsin Breast Cancer Database. I = Cox with BSWiMS, II = Cox with LASSO, III = Cox
with BESS IV = Univariate Cox. Best scores for each stat are bolded.

The second wrapper method used was LASSO and it selected a mean of 6.85 features
in each iteration with a Jaccard index of 0.27. Although the Jaccard number is smaller, the
number of features selected in more than half of the occasions remains. However, the selected
characteristics are different. 75% of the time the lymph node status which is the number
of positive axillary lymph nodes observed at the time of surgery is selected. Followed by
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the perimeter of the third cell that was selected 70% of the time. Subsequently, the size
of the tumor and the symmetry of the first cell chosen in 65%. Finally, the perimeter of
the second cell by 60% and the fractal dimension of the first cell by 55%. LASSO find
an ACC =0.69(0.62,0.76), SEN =0.74(0.6,0.86), SPE=0.68(0.59,0.75) and C-Index Follow-
Up=0.81(0.78,0.84).

Figure 4.16: KM and ROC curves of the wrapper models built with Prognostic Wisconsin
Breast Cancer Database. (a) BSWiMS (b) LASSO (c) RIDGE (d) ELASTICNET (e) GSP-
DAS (BeSS) (f) SPDAS (g) SPDAS with BIC

The third model constructed uses the RIDGE method. It selected the biggest number
group of features with 31.55. It’s Jaccard index is very big with 0.97. 27 of the 32 features
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were selected every time and just the other five range from 0.95 to 0.85 percent of the itera-
tions. Ridge got an ACC = 0.69(0.62,0.76), SEN = 0.70(0.55,0.83), SPE = 0.69(0.61,0.76),
and a C-Index FU = 0.83(0.8,0.86). Almost with the same stats the fourth method, ELASTIC-
NET, used 31.40 features by mean in each model and got a Jaccard index of 0.96. In this case,
just 22 characteristics were selected every time but the other ones were select from 0.95% to
0.90%. ELASTICNET found an ACC = 0.68 (0.61, 0.74), SEN = 0.70 (0.55, 0.83), SPE =
0.67 (0.59, 0.74), C-Index FU = 0.83 (0.81, 0.86).

The fifth model was developed with BeSS. The default version of BeSS which uses
de GSPDAS algorithm selected a mean of 25.50 features with a Jaccard Index of 0.68. It
selected 4 features all the times, Lymph Node status, Fractal dimension of the first cell and
compactness of the third and second cells. All the other features were selected at least in half
of the iterations. GSPDAS found an ACC = 0.66 (0.59, 0.72), SEN = 0.70 (0.55, 0.83), SPE
= 0.64 (0.56, 0.72) and a C-Index FU = 0.69 (0.65, 0.73). Its C-Index Risks was the only one
which was lower than 0.50 with 0.46 (0.41, 0.5). The sixth model uses BeSS once again, but
this time with the SPDAS algorithm. It found the least mean number of features with 1.95 on
each model but its Jaccard index is not the lowest (0.23). None of the features were selected
in at least half of the iterations, the most selected feature was Lymph Node Status in 40% of
the models. Model VI got an ACC = 0.71 (0.64, 0.77), SEN = 0.77 (0.62, 0.88), SPE = 0.70
(0.62, 0.77) and C-Index FU = 0.76 (0.73, 0.79).

SPDAS with BIC also known as Model VII selected just 2.40 features on average. Its
Jaccard index is the lowest of the models with 0.20. It also did not select any of the features
in all the models, and the same feature was selected in 8 of the 20 models. The stats of this
model were the same as the last method, the differences between the stats of these models
were manifested from the 5th decimal place. Figure 4.16 shows the KM and ROC curves of
all the wrappers methods (7 models).

4.5 Prognostic San Jose Hospital Breast Cancer Database

The last section of this chapter reports the results of the Prognostic San Jose Breast Cancer
Dataset analysis. As took place in other of the experiments not all the methods could finish the
task. In this case and with the configuration of the data detailed in Chapter 3, just BSWiMS
could fit the model and get some results. This method chose a large number of features with
an average of 17.6 for each model. BSWiMS holds its Jaccard index in 0.10 taking about 4.90
seconds on average to build the models. BSWiMS finished with an ACC = 0.67 (0.55,0.78),
AUC = 0.66 (0.53, 0.78), SEN = 0.76 (0.50, 0.93), SPE = 0.64 ( 0.50, 0.77), CI Risks = 0.52
(0.43, 0.60) and CI Follow-Up Times of 0.72 (0.64, 0.80). A total of 160 features were used.
Of these, 82 features were used only in one repetition. In contrast, only three characteristics
were used in more than 10 iterations (half of the models produced). Absolute differences
between mediolateral oblique view (MLO) and Craniocaudal view (CC) of z range of level
HH 1 of Wavelets Transforms (F1, 18 times), the same measure but this time for LH 1 level
(F2, 13 times), and dynamic range of HH 1 Level (F4, 10 times), were the most selected
features. We took them to analyze them separately from the other.
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Figure 4.17: (a) KM and (b) ROC curves for the only model which got results on the San Jose
Survival analysis, BSWiMS.

We build a Multivariate Cox Model with those features ant the Concordance Index of
the resultant model is 0.743 and its p-value on the log-rank test is p = 6e−05. The HR for
those features were also calculated. F1 has a HR = 1.056 (0.6533, 1.708), F2 has HR = 2.001
(1.0393, 3.854) and F3 has 1.004 (0.9994, 1.009). The other methods could not get any stats
because they can fit a model with this data. In the discussion section, we will detail and
explain why we think that this happened. Figure 4.17 shows the KM and ROC Curves of the
only resultant model BSWiMS.





Chapter 5

Discussions and Conclusions

This chapter concludes this thesis trying to discuss the results found from the analysis of dif-
ferent data through the ML-Survival models comparison tool: Cox Benchmarking. Regarding
that each experiment has different objectives, they will have its own subsection where their
discussion will take place. Each subsection will contain every field that we consider as a field
in which Cox Benchmarking can help make a decision. Besides, the experiment’s results will
also be analyzed and compared to those in previous works or to the absolute truth in the case
of data simulation experiments. This comparison takes place to ensure that our benchmarking
process is using great methods that can find solutions like the ones that are scientifically pub-
lished. In all the cases, we find that our strategy and our methods got a statistically comparable
behavior to those in the scientific literature but in our case, we have the advantage of allowing
comparison of some methods in the same analysis. Generalized discussions and conclusions
regarding the main objective of the thesis are found in the last section of this Chapter.

On the other hand, within the comparison of methods, you will be able to notice the
main differences between the methods, and the great advantage of the special behavior of
each of them in the different problems to be treated. The use of different types of data allowed
the assessment and comparison of the performance of the different methods to be fair. As
we can see in the following sections, each method has a different performance depending on
the type of data, its size, amount of features or the particular distribution that each situation
has. In the end, although we cannot select one of the methods as better than the previous
ones, we can suggest that the three default methods work correctly in the survival analysis
and that it depends on the user the correct selection of the tool that is the most indicated. In
the conclusions section, we can find more details about our judgment on the methods used.
Finally, this section is about creating new research. With the questions and limitations found
in this thesis, we propose possible problems to be solved in the new research on Future work
section. Issues that could be taken as a starting point for more scientific work and that could
even be indexed publications of the same authors of the thesis. Future work and possible
research left will be detailed as part of the discussion and limitations of each section.

111
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5.1 Discussion
As was observed in each of the results, the CoxBenchmarking method was coupled to the
different situations, whether clinical or simulated. The analysis of these data sets with this
tool only required the preparation of the data. This, in summary, requires the existence of two
variables; the first is the true value of the event (status) and the second is the time until the same
event (time-to-event). The ability of CoxBenchmarking to use censured information (because
of using the Cox model) allows the amount of data we can use to be greater. The development
of this tool focused on facilitating the survival analysis of any kind of information, but mainly
for the help in CAD systems to investigate the prognosis of chronic degenerative diseases.
All experiments used almost the same strategy, and always used the same methods to analyze
and compare the performance of the tool. The results were already reported and discussed
in the previous sections, so this segment will be dedicated to summarize the results and find
common characteristics of the behavior of our tool. Next, we are going to discuss the results of
this thesis considering that the main objective is the evaluation of Machine learning methods
that build survival models based on the Cox Model and how they can influence the decisions
on the prognosis of chronic degenerative diseases based on the results of the clinical cases
studied for this thesis.

ML Method Validation RHOCV was decided to be the evaluation method for the machine
learning strategies since this evaluation technique allowed measuring the effect of the training
set on feature selection, and, at the same time, permitted a training-set unbiased evaluation of
the test performance. The strategy chosen for almost all the experiments was an evaluation
that created 20 random splits of the dataset into training and test set. For each such split, the
train fraction was 0.7 and the remaining 0.3 used for testing. The reported results in all the
experiments indicated that ML methods selected models with very different internal features
but with very similar statistics between them. Model sizes varied considering the experiment
and from method to method. There were very complex models and with very high features
(ELASTICNET and RIDGE more than 200 features) and very simple models such as SPDAS
with BIC criterion that selected in the least case just 3 features on average.

The ability of RHOCV to provide a more adequate evaluation of the methods, allowed
us to know the different behaviors of the methods. Provoking that in each iteration, the feature
selection process resulted in something different. Which allows a more adequate approxima-
tion of its performance. Regardless of the type of data, the stat values were always similar
between the models. With the exception in some statistics such as the Concordance index of
Follow-Up Times where in most cases, RIDGE and ELASTICNET were superior to the other
methods. CoxBenchmarking provides confidence intervals and statistics that demonstrate the
effect size of the results. Both values exhibit a reliable tool for comparing the algorithms.
The CoxBenchmarking plot tool is based on these measurements to be able to graphically
summarize the statistics and help us in ordering the methods by their performance.

Regarding this classification performance, it is important to note that proportional haz-
ard models were not designed for classifications tasks. To address this issue, in all the experi-
ments and models we assumed that subjects predicted to have an increased risk of conversion
(Risk> 1) should correspond to the event occurrence, while subjects at low-risk prediction
(Risk <= 1) should correspond to censored patients. Consider this strategy let us evaluate the
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accuracy, sensitivity, specificity, and AUC of the Cox regression models and compare them
to other scientific works that investigate risk classification in prognosis context. The reported
AUC performance was used in some of our experiments to be compared to other methods.
Regarding the reproducibility of feature selection, the Jaccard analysis indicated that the in-
ternal structure of the Cox models depended on the training set and the set of features used
on each experiment. Depending on the case the Jaccard Index range from values near to 0.1
to big values near to 1. Meaning that the overlapping of the features between models does
not affect at all the statistics that resulted in the final model, but the Jaccard Index statistic
permitted us to comprehend how the methods operated in the feature selection process.

Benchmarking As mentioned earlier, the comparison process is the most important objec-
tive of the thesis. We are convinced that this process has been successfully completed with
the implementation of this method. We use some of the available algorithms to build models
that employ proportional hazard models. However, the method is open for implementation
with new techniques and comparison of results with other works. We were able to realize that
the methods worked similarly in almost all cases. Depending on the nature of the data and
the informational characteristics, the models found very similar statistics and common char-
acteristics among them. Even so, in cases such as in the simulation experiment and BRCA
San Jose, where the number of characteristics is very high and exceeded or matched the num-
ber of patients; ELASTICNET, RIDGE, GSPDAS, SPDAS, and SPDAS.BIC could not fit a
solution. We can justify this behavior because of the type of algorithm with which they work
and by the amount of noise that may exist in these experiments. Therefore, we suggest that
LASSO and especially BSWiMS are methods are more sensitive to fit a solution in data sets
in which the noise is high and the number of features exceeds the number of subjects. This
work also aimed to improve the knowledge of the role of these features in the event; hence
we reported the list of the top biomarkers along with their standardized HR associated with
the event, may help physicians predict how far a specific patient in their prognosis process is.
Considering that there are distinct models regargint its complexity and that despite they found
similar statistics, we believe that the methods base their importance and their differences in
the designation of coefficients for these selected variables. Each of the methods had a highly
respectable performance in different experiments. However, it was noted that LASSO and
BSWiMS were the most stable models and that they managed to be among the best statistics
in almost all experiments. On the other hand, ELASTICNET and RIDGE have a great ability
to predict the concordance of time where they had much superiority compared to the other
methods in two experiments. Finally, BeSS and its three algorithms have more sensitivity in
cases where the amount of data is not large and the amount of noise is minimal. The filter
analyzes helped to recognize that the use of the methods does improve the quality and, above
all, better approximate the value of the coefficients of the variables in some cases.

5.2 Simulation data

This experiment is a fundamental piece in the development of the thesis. Although its clinical
importance is null, and its implementation does not require as much knowledge or develop-
ment time as the development of the tool per se, the results of the tool were the starting point
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for the use of the tool in the following data. Because we are the ones who created the simula-
tion variables, we are sure of the expected result when analyzing the data from the simulation.
It is well known that although in a simulation scenario the influence of randomness is included
(so that the generation of data is more real), this does not change the factors that we decide
to influence an expected outcome; For this reason, each of the methods is expected to select
these characteristics and their influence to be measured in the same way in which they were
used to generate the data.

Random features One of the main concerns in the simulation process is the random vari-
ables. In this case, we summarized the selection of random variables in the Table 5.1. The
table details the number of random variables selected in more than the half of the repetitions
for each experiment. In the other hand, Table 5.2 details the false discovery rate (true variables
/ random variables, both in more of the half of repetitions) and the mean of variables used in
each model for the experiments.

Problem 4 features 11 features

Real Random Real Random

N x N 4 0 8 1
N x (100 – N) 4 9 7 2

N x (1000 – N) 4 10 7 5

Table 5.1: Random variables selected in more than the half of the iterations for all the experi-
ments

Method 4 features 8 features

8 100 1000 21 101 1001

BSWiMS 2.9(0) 2.6(0) 2.25 4.5(0) 4.7(0) 3.4
LASSO 6.6(0.5) 9.9(0.66) 25.5 12.4(>1) 21.7(>1) 31.4

RIDGE* 7.9 96.9 - 20.95 99.95 -
ELASTICNET* 7.9 97.1 - 20.95 100.1 -

GSPDAS 5.3(0.25) 56.3(>1) - 11.3(>1) 58.2(>1) -
SPDAS 3.4(0) 3.25(0) - 6.4(0) 4.9(0) -

SPDAS.BIC 3.05(0) 4.4(0) - 6.2(0) 6.4(0) -

Table 5.2: Mean variables selected by each method in the models. False discovery rate is
shown inside the parenthesis. FDR is calculated with the ratio of random variables selected in
more than the half of the models.

Feature selection Considering the above, the methods must generate models that look like
the ground truth used to generate the simulation. That is, they need to select the features that
influence the event, especially those that have a greater effect size within the survival model
that generated the probability of the event. In this case, regarding Table 3.2 where we detailed
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the characteristics that will be related to the event in the simulation. It is considered that the
characteristics with an effect size greater than one (that are also the two characteristics with
binomial distribution) should be the most selected features by all the methods. Depending on
the case, whether 4 or 10 variables are used, these two characteristics should be in the models.
The other effect sizes try to reduce the magnitude of the measurements so that the weight of
their values in the survival equation is equivalent. However, in those variables, we wish to
at least find a Hazard ratio similar to those used for the simulation. Regarding this selection,
we will ignore the selection of RIDGE and ELASTICNET functions for discussion, because
these functions have always selected almost all the characteristics and their coefficients are
what allows them to be similar to the other methods.

The first step for being able to know if the selection of these characteristics is possible
and to be able to take into account if the simulation was developed properly, is the generation
of a Cox model that uses all the characteristics and thus know the possible effect size that
will be generated with this model. The size of the effect should be similar in magnitude and
sense. The table 5.3 summarizes the Cox model coefficients generated from these character-
istics with the simulated data with the 11 real characteristics. As well as the Hazard Ratio of
each variable. The c-index of the Cox model is 0.754 with a log-rank p-value of 2e-16. These
results ensure that the data simulation was correct, that the expected variables should be se-
lected, but that the vast majority of variables will be neglected, given the size of their effect.
Depending on the number of random characteristics added to the model and the number of
real variables, the number of times a real variable is selected in the model is defined. Taking
into account that the probability that the random variables follow a binomial distribution is
0.5. Many of the random variables selected may have similarities to the data and therefore be
selected. However, the fact that these variables were not used for the generation of simulation
data, makes their influence on the outcome remain lower than the actual variables in the final
model. Although random variables are selected, we must take into account the selection of
real variables. Next, we will analyze the results depending on the number of features.

4 features In the three experiments, the Lesions and Surgeries feature were selected in al-
most all the models as was expected. The other two variables were selected by all strategies,
but the number of times selected changes depending on the algorithm. Of the methods that
select features, GSPDAS is the only one that uses all real variables in all 20 iterations. How-
ever, it also makes use of all random variables although almost always in less than half of
the iterations. Instead, SPDAS and SPDAS with BIC select L, S, and ORtg at all times but
SPDAS uses more random features than the selection with BIC. On the other hand, BSWiMS
is the model that selected the least amount of variables regardless of how many random vari-
ables were used. However, he only selected L and S at all times. Offensive Rating was only
selected in 11 iterations. LASSO selected the 4 variables when the amount of random data
was not high, however, when the noise is higher, the Defensive Rating was selected only in
two models. LASSO had an intermediate amount of randomly selected values. This num-
ber is between the amount of random data selected by GSPDAS and SPDAS. Finally, Cox’s
univariate analysis had very similar behaviors the amount of random data aggregated. The
same variables as in SPDAS were selected but with almost no random values on both occa-
sions. However, it selected more random values than BSWiMS. In general terms, BSWiMS
was the one that selected the least random data and the Univariate analysis that most closely
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approached the real model in terms of variables. This behavior is quite expected since the
simulation used a Cox model to generate the survival of each subject.

11 features In the case of 11 characteristics, there are two behaviors (caused by the number
of random variables added to the data set). When ten random variables are added, the real
variables are selected in more times than the case with 90 random characteristics. This can be
explained because in the first case the aggregate noise is very short compared to the number
of features that explain the result. However, the behavior of each method is different and a
bit similar to the case of 4 features. BSWiMS once again did not select random features, just
in an iteration with the 90 variables case. It selected L, S in all iterations and BLK in more
than half of the times. However, the other real features were selected but on very few times
(always less than 6 iterations).

Feature Effect Size Hazard Ratio

bmi 0.0492158 1.0504470
age 0.0967256 1.1015581
games -0.0004847 0.9995154
minutes -0.0033824 0.9966233
AST -0.0222014 0.9780433
FGP -0.0495677 0.9516407
BLK -0.4319036 0.6492720
ORtg -0.0457648 0.9552666
DRtg. 0.0514445 1.0527907
L 0.8479576 2.3348732
S 1.3369331 3.8073488

Table 5.3: Cox Model summary using the eleven real features with the simulated data. First
column shows the features related with the outcome, second column the effect size of each
feature and the third the Hazard Ratio of each feature exp(β)

LASSO, in this case, had a better selection of the real characteristics. More than 7 real
characteristics were used in all models of both cases. However, many random features were
selected in the models although in less than half of the iterations. Games and minutes were
used in 5 models. It selected L, S in all iterations and BLK in more than half of the time.
However, the other real characteristics were selected but on very few occasions (always less
than 6 iterations). LASSO, in this case, had a better selection of the real characteristics. More
than 7 real characteristics were used in all models of both cases. However, many random
features were selected in the models, although in less than half of the iterations. Games
and minutes were used in 5 models. GSPDAS made use of all the variables and equal 7 real
variables in all the models. On the other hand, SPDAS selected only 4 and its criteria with BIC
in 3 models. It selected L, S in all iterations and BLK in more than half of the time. However,
the other real characteristics were selected but on very few occasions (always less than 6
iterations). LASSO, in this case, had a better selection of the real characteristics. More than
7 real characteristics were used in all models of both cases. However, many random features
were selected in the models, although in less than half of the iterations. Games and minutes
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were used in 5 models. GSPDAS made use of all the variables and equal 7 real variables in all
the models. On the other hand, SPDAS selected only 4 and its criteria with BIC in 3 models.
GSPDAS selected much more random features compared to the other algorithms member of
BeSS package. Univariate Cox selected just 4 features with big coefficients but it ignored the
random features.

Figure 5.1: Bar plot for Concordance Index Follow-up Times. (a) 4 real and 4 random features
(b) 4 real and 96 random features (c) 11 real and 10 random features (d) 11 real and 90 random
features.

ML Method Validation In order to be sure that the RHOCV strategy uses all simulated data
(players) as training and test data, we use a training fraction of 0.7 with 20 iterations. That
is, for each method, 20 models are constructed from which its statistics are calculated and the
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average of each one is used for the final prediction. This strategy is used to allow a fair and
unbiased evaluation of test set performance. Since the simulated data have absolute truth, the
complexity of the models depends entirely on each method. Several behaviors were found,
having models with very high complexity in cases such as RIDGE and ELASTICNET that
select all the uncorrelated characteristics and use the coefficients to give importance to each
feature; and too simple models such as BSWiMS and BeSS with BIC that selecting the least
number of features that allow for good performance. The most complex model was RIDGE
and ELASTICNET model in case of the 11 real features and 90 random features selecting
100.10 on average; and the simplest was BSWiMS just chossing 2.90 features in the problem
with 4 real features and 4 random features.

Benchmarking The Benchmarking process helped to realize that when we know the ground
truth, the results are statistically similar. As visualized in the results, all statistics calculated
in the models have values that are interlaced within the confidence intervals between them.
None of the methods was statistically significant. However, there was a lot of difference
in the number of features selected and in the Jaccard Index of each feature. The figure 5.2
shows the bar graph of the number of variables selected for all the methods in the first two
experiments of 4 features and 11. On the other hand, a statistical difference was also found
in the results of C-Index Follow-up times in all the experiments. Where the algorithms that
belong to GLMNET were superior to the others, especially ELASTICNET and RIDGE. The
figure 5.1 shows the bar graphs that demonstrate the difference between the methods in this
statistic.

Figure 5.2: Bar plot for the number of features and Jaccard Index. Left size shows the barplot
for Jaccard Index of each model and Right size shows the mean number of features (a) 4 real
and 4 random features (b) 4 real and 96 random features (c) 11 real and 10 random features
(d) 11 real and 90 random features.
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Limitations These types of experiments help a lot to know how well the strategy works and
if the behavior is as expected. However, sometimes the type of data used or the magnitude
of the selected variables may result in the results not being as intended at the beginning. In
our case, the difference in magnitude between the values made the estimation of coefficients
important when simulating the probability of survival. We realized that many variables had
such a small effect size that they were almost irrelevant and that is why they were hardly
selected in the models. However, the two variables in which a large effect size was used
intentionally were selected. The main limitation when conducting experiments with simulated
data is the lack of data generation experience.

5.3 TADPOLE-ADNI

Results on this experiment were published in two Bioinformatics conferences. The first study
were developed for the IEEE-EMBS International Conference on Biomedical and Health In-
formatics held from 19 to 22 May 2019 under the name ”Studying MCI to AD Conversion
Radiomics-Based Survival Indexes by Machine Learning”. This research were expanded to be
published in a journal of the same institution but it was rejected. Lately, the second study were
developed for SPIE Medical Imaging Conference held on February 2020. The second study
was published as ”Prediction of MCI to AD risk of conversion survival models: qMRI vs CSF
measures and cognitive assessments”. A combination of both studies is in development for
publication in a new journal.

5.3.1 Survival Models Associated with MCI to AD Conversion with qMRI
features

In this work, we compared four different ML strategies that generated six proportional hazard
models from qMRI structural analysis of MCI patients that either converted to AD or remained
as MCI. The first three strategies - BSWiMS, LASSO, and BeSS - returned a Cox regression
model and the set of features that were required to make an accurate estimation of the risk
of conversion. The fourth strategy was a filter approach; hence selected features were used
to build a standard Cox regression model. This last strategy was evaluated with the features
generated by the first three methods and the features generated by a univariate Cox regression
model. The performance of six proportional hazard models was evaluated using RHOCV
and the most common features analyzed to report their importance in the rate of MCI to AD
conversion.

ML Method Validation The RHOCV evaluation created 20 random splits of the dataset
into training and test set. For each such split, the train fraction was 0.7 and the remaining 0.3
was used for testing. This evaluation strategy allowed the evaluation of the effect of the train-
ing set on feature selection, and, at the same time, permited a training-set unbiased evaluation
of the test performance. The reported results indicated that ML methods selected models with
very different internal features. Model sizes varied from method to method and ranged from
a minimum of 13 features to complex multivariate modeling based on 103 features. The six
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qMRI-based models reported c-index ranging from 0.63 to 0.84. The simplest model over-
performed the most complex one: 0.84 (CI 0.82,0.86) for Coxnet vs 0.63 (CI 0.60,0.66) for
BeSS.

Regarding this classification performance, it is important to note that proportional haz-
ard models were not designed for classifications task. To address this issue, we assumed that
subjects predicted to have an increased risk of conversion (Risk > 1) should correspond to
true MCI to AD conversion, while subjects at low-risk prediction (Risk ≤ 1) should corre-
spond to MCI-stable subjects. This strategy allowed us to evaluate the accuracy, sensitivity,
specificity, and AUC of the Cox regression models. The reported AUC performance of the
methods ranged from 0.67 to 0.73 for their potential to detect patients at risk of conversion.
This performance was slightly lower to other methods based on SVM or Logistic Regression
classifiers [42]. To test the impact of using all subjects in ROC AUC analysis, we conducted
a post hoc experiment. In this experiment, we analyzed test prediction on MCI stable subjects
whose last visit was greater than 4 years (146 no-event subjects did not meet the criteria). This
change in selection criteria resulted in the ROC curve presented by Figure 5.3. We clearly see
that Cox based conversion risk prediction had a similar performance (ROC AUC= 0.79) to
previous works [70].

Regarding the reproducibility of feature selection, the Jaccard analysis indicated that the
internal structure of the Cox models depended on the training set. The method with the largest
Jaccard index (0.65) was based on the univariate filter, and also was the method with the
largest set of features and with the poorest performance. The smallest models were returned
by the BSWiMS strategy. It had a Jaccard Index 0.35, implying that only 35% of the features
overlapped across different training sets. These results put forward that the discovery of risk
factors associated with MCI to AD conversion depended on the training set and the machine
learning strategy used to discover risk factors. This observation is supported by the literature,
where different authors have reported a different set of features associated with MCI to AD
conversion.

Feature Relevance and Analysis This work analyzed 316 features and their role in MCI to
AD conversion risk. The RHOCV reported that 301 out of the 316 characteristics may have
some association, but the detailed analysis indicated that only ten features were selected at
least 50% of the time. Many of these ten features have already been reported as potential
biomarkers associated with MCI to AD conversion [23, 30, 64, 28]. APOE4, a factor that has
been validated several times as a biomarker indicative of the risk of conversion [23] was an
important validation in our work. qMRI related features included the decreased volume of
the cortical parcellation of the entorhinal, the increase in the white matter parcellation of the
amygdala and increase volume and thickness standard deviation of Bankssts. These findings
confirmed the results of previous studies [30, 28, 106]. Regarding novel features, our work
suggests that large differences between left-right brain structures like the Pars Opercularis,
Middle Temporal Lobule, and the Inferior Parietal Lobule, unlike the volumes listed for each
condition and structure as mentioned in previous studies [45, 43, 125]. This work also aimed
to improve the knowledge of the role of these features in the AD process; hence we reported
the list of the top biomarkers along with their standardized HR associated with the conversion
of MCI to AD. Reporting HR per z-units of the normal distribution may help physicians
predict how far a specific patient in their MCI to AD process is.
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Figure 5.3: Coxnet ROC with 296 patients who suffered the conversion or have a censored
event in more than 4 years.

Limitations The results presented in this work are limited in three key aspects. First, patient
misdiagnosis is present, hence affecting feature selection and model building. The dementia
diagnosis of “true” AD patients is not an exact science, hence detecting the exact time of
conversion is also prone to diagnoses errors, and these two errors are present in modeled
survival outcome. Second, it is based on the ADNI cohort and measurements; therefore, it is
biased towards the environmental factors present in the US and the Caucasian race. Third, we
assumed that all MCI will convert to AD in some point in the future. This assumption should
not be a major issue if the proportion of misdiagnosed MCI is low. These key limitations
indicate that the presented findings have to be confirmed on cohorts from different countries
and ethnicities.

5.3.2 Prediction of MCI to AD Risk of Conversion Survival Models:
qMRI vs CSF Measures and Cognitive Assessments

In this paper, we study seven different ML strategies that generated ten proportional risk mod-
els for each of the features groups and some combinations of them (Experiment I-VI). The
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comparative evaluation of the CSF measures, the Cog evaluations and the structural charac-
teristics of qMRI allowed us to study the conversion rate for patients with MCI who converted
to AD or remained as MCI and evaluate the predictive power of the characteristics of qMRI
against the other groups. The first 6 strategies (BSWiMS, LASSO, RIDGE, GPDAS, SPDAS
and SPADS.BIC) returned a Cox regression model and the set of features that were required to
make an accurate estimate of the conversion risk for each of the experiments. The following
three strategies had a filter approach; Thus, the characteristics selected by the three default
methods explored (BSWiMS, LASSO and GPDAS) were used to construct a standard Cox re-
gression model. The last strategy evaluates the variables by using a univariate Cox regression
model for characteristics that exceed a given threshold. The performance of 10 proportional
risk models for each experiment was evaluated using RHOCV and the most common char-
acteristics were analyzed in the model that combined all the feature groups to report their
importance in the MCI to AD conversion rate.

ML Method Validation The RHOCV evaluation created 20 random splits of the dataset
into training and test set. For each such split, the train fraction was 0.7 and the remaining
0.3 was used for testing. This evaluation strategy allowed the evaluation of the effect of
the training set on feature selection, and, at the same time, permited a training-set unbiased
evaluation of the test performance. The reported results indicated that ML methods selected
models with very different internal features. Model sizes varied considering the group of
features used and from method to method. They ranged from a minimum of 3 features to
complex multivariate modeling based on 294 features. The c-index on Follow-up times range
depends on the type of features that were used in the model, but considering all the models it
ranges from 0.59(0.56,0.62) for GPDAS on experiment IV to 0.93(0.91,0.94) for RIDGE on
experiment V. In the Experiment VI (all group of features) the most complex model RIDGE
has a very good c-index Follow up times 0.91(0.89,0.92) but its c-index on risks was not as
good 0.63(0.61,0.66).

Regarding this classification performance, it is important to note that proportional haz-
ard models were not designed for classifications task. To address this issue, we assumed that
subjects predicted to have an increased risk of conversion (Risk > 1) should correspond to
true MCI to AD conversion, while subjects at low-risk prediction (Risk <= 1) should corre-
spond to MCI-stable subjects. This strategy allowed us to evaluate the accuracy, sensitivity,
specificity, and AUC of the Cox regression models. The reported AUC performance for their
potential to detect patients at risk of conversion overall the models ranged from 0.69 for GP-
DAS on experiment III to 0.72 for BSWiMS on experiment IV. This performance was slightly
lower to other methods based on SVM or Logistic Regression classifiers [42]. To test the im-
pact of using all subjects in ROC AUC analysis, we conducted a post hoc experiment. In this
experiment, we analyzed test prediction on MCI stable subjects whose last visit was greater
than 3 years (52 no-event subjects did not meet the criteria). The experiment was conducted
with BSWiMS using the dataset of Experiment VI. This change in selection criteria resulted
in the ROC curve presented by Figure 5.4. We clearly see that Cox based conversion risk
prediction had a similar performance (ROC ACU= 0.896) to previous works [70].

Regarding the reproducibility of feature selection, the Jaccard analysis indicated that
the internal structure of the Cox models depended on the training set and the set of features
used on each experiment. In the experiment VI, the method with the largest Jaccard index
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Figure 5.4: BSWiMS ROC with 347 patients who suffered the conversion or have a censored
event in more than 3 years.

(0.86) was based on RIDGE selection, which also was the method with the largest set of
features but with the best performance on concordance of follow-up times. The smallest
models among all the experiments were returned by the SPDAS strategy. Its Jaccard Index
on the same experiment was 0.51, implying that only 51% of the features overlapped across
different training sets. These results put forward that the discovery of risk factors associated
with MCI to AD conversion depended on the training set and the machine learning strategy
used to discover risk factors. This observation is supported by the literature, where different
authors have reported a different set of features associated with MCI to AD conversion.

Feature relevance and analysis This work studied three different types of variables -CSF
measures, Cognitive assessments, Radiomics Features - used for the generation of survival
models for the conversion rate of patients from MCI to AD. Ten different strategies were used
over 6 different experiments, the reported stats allow discussing the importance and influence
of the features in conversion. The detailed analysis on features selected in the Experiment
VI indicated that only eight features out of 322, were selected at least 50% of the time. The
correlation of those features are shown in the figure 5.5. Almost all of these eight features
have already been reported as potential biomarkers associated with MCI to AD conversion
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[118, 85, 87, 81]. qMRI related features included the decreased volume of the cortical parcel-
lation of the entorhinal and temporal, and increase volume and thickness standard deviation
of Bankssts. These findings confirmed the results of previous studies [30, 28, 106].

Figure 5.5: Heatmap of the features used in the Experiment VI.

CSF Measures have already been reported as a risk factor for the MCI to AD conversion.
Accordingly, they had a great performance on c-index Follow-up ranging from 0.72 to 0.76.
Moreover, the specificity of the model was low SPE = (0.53,0.57). Cog-assessments as well
have already be used as a good technique to classify the conversion of the patients; Thus,
ACC = (0.74-0.76) AUC = (0.8-0.81). Past work reported the role of Radiomics features on
survival models [78]. Updates on that experiment result in c-index Follow-up times ranging
from 0.72 to 0.92 but once again its role on classification is not as good ACC = (0.63-0.68).

The combination of the set of features on Experiments IV, V & VI results in some bet-
ter performances over all the stats but with non-significative statistically differences between
them. In the context of follow-up times, the best method over these three experiments was
RIDGE. Results on the experiments were: Experiment IV c-index FT = 0.92 (0.91, 0.93),
Experiment V c-index FT = 0.93 (0.91, 0.94), and Experiment VI c-index FT = 0.91 (0.89,
0.92). Therefore, adding information about CSF Measures or Cog-assessments to the model
of Radiomics features do not add significative information. This work also aimed to improve
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the knowledge of the role of these features in the AD process; hence we reported the list of
the top biomarkers along with their standardized HR associated with the conversion of MCI
to AD. Reporting HR per z-units of the normal distribution may help physicians predict how
far a specific patient in their MCI to AD process is.

V FT MT
Event
Mean
(SD)

No
event
Mean
(SD)

MV HR
(95% CI)

UV HR
(95% CI) M1 M2 M3 M4 M5 M6 M7

1 C S
1.85

(0.92)
1.25

(0.69)
1.40***

(1.20,1.60)
1.8****
(1.6,2) 3 4 4 2 3 2 4

2 C S
28.71
(8.04)

36.22
(10.39)

0.61***
(0.49,0.77)

0.45****
(0.37,0.54) 2 2 2 1 5 1 2

3 C S
20.68
(6.25)

14.44
(5.66)

1.60***
(1.30,1.90)

2.70****
(2.30,3.20) 1 1 1 3 2 6 1

4 C S
5.01

(4.65)
2.21
(3.3)

1.20*
(1.00,1.40)

1.60****
(1.40,1.80) 5 3 3 7 6 5 3

5 M V
1535.31
(423.91)

1783.72
(426.17)

0.79*
(0.63,0.99)

0.47****
(0.39,0.57) 6 5 5 8 7 8 5

6 P P
766.81

(715.52)
598.21

(666.43)
0.54***

(0.43,0.68)
0.44****

(0.35,0.55) 4 6 6 4 1 3 6

7 M V
8896.89
(1803.1)

9681.64
(1617.63)

0.63***
(0.50,0.79)

0.49****
(0.40,0.61) 8 7 7 6 4 4 7

8 M CT
0.54

(0.08)
0.51

(0.08)
1.40*

(1.10,1.90)
1.70****
(1.40,2.2) 7 8 8 5 8 7 8

Table 5.4: Characteristics and ranking of eight features selected in almost the half of the
iterations. The ranking was ordered based on the number of times selected, then ordered
depending on the p-value of univariate cox analysis and finally, the concordance index of the
univariate model. [FT = feature type; M=mean, C=Cog. Assessment, P=CSF Measure], [mt =
measure type; v=volume (mm3), p = protein, ct = cortical thickness (mm)], [M1 = BSWiMS,
M2 = LASSO, M3 = RIDGE, M4 = GPDAS, M5=SPDAS, M6=SPDAS.BIC, M7=Univariate
Cox] P. Value significance: < 0.1, * < 0.05, ** < 0.01, *** < 0.001, **** < 10−04

Limitations The results presented in this work are limited in three key aspects. First, patient
misdiagnosis is present, hence affecting feature selection and model building. The diagnosis
of AD is not definitive, but according to the NINCDS-ADRDA it is a probable diagnosis of
AD. The error rate for this diagnosis occurs about 10% to 15% of cases [108]. Hence detecting
the exact time of conversion is also prone to diagnoses errors, and these two errors are present
in modeled survival outcome. Second, it is based on the ADNI cohort and measurements;
therefore, it is biased towards the environmental factors present in the US and the Caucasian
race. Third, we assumed that all MCI will convert to AD in some point in the future. This
assumption should not be a major issue if the proportion of misdiagnosed MCI is low. These
key limitations indicate that the presented findings have to be confirmed on cohorts from
different countries and ethnicities.
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Conclusion Radiomics biomarkers in the form of quantitative MRI assessments were an
important source of features in the prediction of MCI to AD conversion time in models that
only contained ApoE4, Cognitive Assessments and qMRI. Adding CSF biomarkers did not
improve the accuracy nor the concordance of multi-source Survival Models.

5.4 Osteoarthritis Initiative: OAI
In this experiment, we examine 7 different ML strategies that generated 11 proportional risk
models for the X-Rays features and OA Scores. We try to find the relationship between these
characteristics with the total knee replacement using the information of both knees, regardless
of which one is the event. The first 7 strategies (BSWiMS, LASSO, RIDGE, GPDAS, SPDAS,
and SPADS.BIC) returned a Cox regression model and the set of features that were required
to make an accurate estimate of TKR on patients. The following three strategies had a filter
approach; Thus, the characteristics selected by the three default methods explored (BSWiMS,
LASSO, and GPDAS) were used to construct a standard Cox regression model. The last strat-
egy evaluates the variables by using a univariate Cox regression model for characteristics that
exceed a given threshold. The performance of 20 proportional risk models for each experi-
ment was evaluated using RHOCV and the most common characteristics were analyzed in the
model that combined all the feature groups to report their relation to the TKR event.

Feature Relevance and Analysis A total of 15 features were selected in 80 iterations out of
160 iterations and 236 features of this experiment. This features were used to compute a Cox
Model and find their association to TKR Event. The most selected variable Kellgreen and
Lawrence grades are used right now in the OA screening from a lot of time ago [61]. Both
Kellgren and Lawrence grades got a Hazard ratio bigger than one which means that when the
difference of the grades between knees is bigger, the risk is also bigger. Besides, the mean of
the grades is also directly proportional to the risk. The scores of KOOS were validated for the
knee injury [94] and the relationship with TKR was studied [39]. In our model, both score
have the HR less than one, which means that the risk is lower when the score is higher. Some
studies conclude that the participation in sports had a increased prevalence rate of OA [29].
Others say that the sports was not associated with the risk of developing an incedent with
OA [86]. In our model, the biggest HR was found on the x position of the minimum JSW
measure, but its confidence interval goes from 0.21 to 27.38 which is not a good indicator.
The variability of this feature occurred because of its nature. We think that the selection of
this variable has to do with the value of the minimum JSW.

Benchmarking We left the clinical relevance of the features for future works and we are go-
ing to take more importance into the discussion of the benchmarking process. In the figure 5.6
we show the result of the plot process of the CoxBenchmarking model for the OAI analysis.
All the plots show a comparison between the stats of all the wrapper methods. We chose to
compare just the wrapper methods because only those methods selected features but we will
mention all the filter methods if in that stat its behavior is better. In case of Accuracy, all the
models got statistically equivalent results. The best result was reported by RIDGE, ELASTIC-
NET and later BSWiMS. These three methods are the only ones that show a slightly superior
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behavior compared to GSPDAS and SPDAS. However, the lower tail of these three methods
does run into the upper tail of the other two methods. Regarding AUC and SEN the result
is the same, but the difference between the best stat and the worst is Negligible. The main
difference between AUC and SEN is the order of the models. The best AUC was found by
the same method than ACC (RIDGE), but the best SEN was found in the SPDAS algorithm.
On the other hand, the SPE reported the same behavior than the ACC stat; the best SPE was
also found in RIDGE and its difference in mean between RIDGE SPE and the the worst SPE
in SPDAS is 0.9.

Figure 5.6: Plot of CoxBenchmarking analysis of OAI data. Barplots for (a) Balanced Er-
ror (b) Accuracy (c) ROC.AUC (d) Sensitivity (e) Specificity (f) C-Index Risks (g) C-Index
Follow-Up Times (h) Jaccard Index (i) Mean of features
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Regarding C-Index Risks the models show almost the same stat but this time, the fil-
ter methods got a much better result than wrappers. With the characteristics selected with
BSWiMS, a C-Index was found that was far superior to the Wrappers models with 0.85 (0.82,
0.88). The model that follows is developed with LASSO whose upper tail touches the lower
tail of BSWiMS. The filter with GSPDAS reduces its statistics however it is still better than
its result with the wrapper method. Cox’s univariate analysis also had a higher result than the
models generated by wrappers. In contrast, C-Index Follow-up Times shows the most uneven
statistic of all. RIDGE and ELASTICNET once again got the best C-Index FT with 0.79
(0.76, 0.82). The next model is BSWiMS whose interval is smaller than RIDGE and ELAS-
TICNET but overlaps with LASSO which is the next statistic in order. The methods belonging
to the BeSS package had similar statistics but were inferential to BSWiMS, ELASTICNET,
and RIDGE, they only reached the lower tail of the LASSO result.

The classification and survival statistics in general terms show a similar performance.
The main difference shown by the models is the quantity and variability of features that are
used to build the Cox model. Variability is measured with the Jaccard Index and within the
built models, we find that RIDGE and ELASTICNET have a very high index (close to one)
which means that the models are almost the same in each iteration. On the other hand, GSP-
DAS has a very low index compared to the RIDGE (Jaccard Index of 0.2), which suggests
that BeSS selected different models in each iteration. This statistic is better explained and
interpreted by knowing the number of mean variables used by each model. In the case of
RIGDE and ELASTICNET that chose more than 200 variables, they have a very high Jac-
card index because they select the majority of available features. This happens because these
techniques always leave all the characteristics that do not have an extreme correlation, but
later they penalize the characteristics through the coefficients. In contrast, SPDAS with BIC
selected less than 5 features per model but tested with different combinations in each itera-
tion so its Jaccard Index is close to 0.4. BSWiMS and Unicox selected several quite similar
characteristics, LASSO and GSPDAS found variables between 30 and 50 characteristics. The
difference between SPDAS and the other methods that select more than 20 characteristics is
noted.

Limitations This paper presents its main limitation in the lack of clinical knowledge about
OA. Although the results are quite promising, we cannot infer or discuss clinical problems
without having the knowledge or support of someone trained in the field. In this work, we limit
ourselves to informing and comparing the statistics shown by the survival models generated.
On the other hand, the order of the data and the form of distribution presented by the OAI
generate a small inconvenience when carrying out the analysis. This experiment is the one
that required more time for its preparation before the analysis with this tool. This limited the
amount of information that can be added to use in the models. Finally, the limitation we knew
to overcome is the number of events available. If we compare the number of events with the
amount of data, we only had 10% of the events.
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5.5 Prognostic Wisconsin Breast Cancer Database

Figure 5.7: Plot of CoxBenchmarking analysis of BRCA Wisconsin data. Barplots for (a)
Balanced Error (b) Accuracy (c) ROC.AUC (d) Specificity (e) C-Index Risks (f) C-Index
Follow-Up Times (g) Sensitivity (h) Jaccard Index (i) Mean of features

This paper tries to estimate the recurrence time of breast cancer patients belonging to the
prognosis database of the University of Wisconsin. In this experiment, the lowest statistics of
all the models developed in this thesis were reported. Even so, this was expected due to the
nature of the data and by previous studies that state that the Cox model does not work with this
prediction [120]. On the other hand, it is important to take into account that the data was used
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raw (like they were publicly provided), which may affect the ability of the methods to find a
result. However, we take into account that the main objective of this thesis is the evaluation
of these methods for the survival analysis, so because the results between the methods (whose
final objective is to do the same analysis) were not so different and a comparison can be made,
then we analyze each of the statistics.

Benchmarking All statistics presented statistically equivalent values. All ranking statistics
have their confidence intervals intertwined and the differences between their means are negli-
gible. In the context of survival statistics, if a comparison of the methods can be made. In the
case of C-Index Risks, GSPDAS was the model that had the lowest concordance value. The
highest value in its tail does not reach the lowest value of ELASTICNET, LASSO, RIDGE,
and BSWiMS. However, its highest value is the statistical average of the other algorithms
that belong to the BeSS package. In the case of C-Index Follow-up Times SPDAS, SPDAS
with BIC and GSPDAS, in that order, were worse than the concordance found by the mod-
els created by the algorithms that are part of GLMNET. BSWiMS is a bit inferior to these
models, however, its upper tail is intertwined with the tails of the other methods. The best
matching model was ELASTICNET. Figure 5.7 shows the plot representation of the stats of
this analysis.

5.6 Prognostic San Jose Breast Cancer Database

The objective of this analysis is to find characteristics that are part of the mammogram to be
able to predict the recurrence time of the patients of the San Jose Hospital. The main problem
of this discussion will be seen from the fact that only one model managed to reach a result, all
the others did not find a solution. Next, we will discuss the importance of the results shown
by this model. In this case, due to the nature of the data we only used a RHOCV that created
20 random splits of the dataset into training and test set. For each such split, the train fraction
was 0.6 and the remaining 0.4 was used for testing.

Feature Relevance and Analysis BSWiMS selected 160 features out of 1091 features.
However, of all those selected, only three were used in at least half of the characteristics.
We will use these features later as the top features. On the other hand, of the remaining 157
characteristics, only 11 characteristics were used in more than 20% of the iterations and less
than 10 iterations; that is, 146 features were used in almost no model. If we take into ac-
count that the number of variables analyzed was 1089, we are using approximately 15% of
the characteristics for the models. The fact that 146 features are used in a few models, makes
the Jaccard index much lower than what BSWiMS had accustomed us in the other experi-
ments. BSWiMS got an Sensitivity of 0.76 which can be compared to the validation score of
Oncotype REF.



5.6. PROGNOSTIC SAN JOSE BREAST CANCER DATABASE 131

Figure 5.8: KM Curves stratified by the median of (a) HH1 Level z-Score p=0.063 (b) PAM50
Score p=0.22, (c) Oncotype p=0.50

Regarding the top features, we used them to predict the recurrence time of BRCA with a
separate Cox Model. We relate the recurrence time to the z-range of HH1 and LH1 level and
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Dynamic range of the level HH. With those features, we got a concordance index of 0.74 (se
= 0.068) and the Log-rank test p-value p = 6e-05. The features result in positive HR which
means more risk when the value is greater. HH1 z-range finished with HR = 1.056 (0.65,
1.71), LH1 z-range HR = 2.00 (1.04, 3.85) and Dynamic Range HR 1.004 (0.996, 1.009).
Those HRs are not that important if we consider the magnitude of the value. Henceforth, to
give better information about the features we create a KM Curve for the most selected variable
by arranging the patients with the median of the value of that characteristic. The figure 5.8(a)
shows the KM Curve generated by stratifying the data by HH1 level z-range median. The log-
rank test p-value for this KM Curve is: p = 0.063. In contrast, PAM50 p = 0.22 and Oncotype
p = 0.50 KM curves shown in the figure 5.8(b)(c) despite being validated scores, they do not
have such a good survival curve with these data.

Limitations The main limitation of this data set is the number of events we have and also
the total data. However, being an investigation that belongs to the institution, it is known
that more information will be obtained. For this reason, the information obtained through
this research is very important for the continued development of this base. Second, the most
considerable limitation is caused by the number of variables that have to be analyzed. With
this amount of features and taking into account the feature selection strategies; None of the
models could find a solution for the model. The number of features limited the comparison
and therefore use of the CoxBenchmarking tool.

5.7 Conclusions

After the analysis of the results on experiments and their comparison to the ground truth and
previous studies. We can assure that the machine learning algorithms selected in this thesis
allow the construction of reliable survival Cox models that allowed study survival times for
subject who suffers an event. In this case, especially in the application of those ML tech-
niques on chronic degenerative diseases; on which, through the selection of clinical features
such as mammograms, X-rays, MRI and PET, forms and clinical data about the patient, can
partly explain the outcome. Even though some algorithms did have better performances in
some circumstances and statistics, we conclude that any of them can be used in the medical
context and discover relevant information in that context. The overall discrepancy between
their performance can be taken as an advantage that permits get deeper information about the
event. Hence, the CoxBenchmarking tool provides a strong method that provides valuable
information for the survival study, making use of techniques that are already helpful by them
selfs and adding its benchmarking let us explore different points of view.

5.8 Future work

This thesis managed to answer some questions but also founded the basis for remaining high
importance research. Regarding the data simulation case, the performance of CoxBenchmark-
ing was measured with high noise datasets. The next work should concentrate on modifying
the technique to help the methods somehow find a solution for these sets. Changes in the
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R package implementation may be required. In other hand, the importance of the random
variables was not fully studied. Those studies require some experiments to measure how the
random variables change the models. Regarding the number of methods analyzed, it is still
pending to analyze more techniques and implement ways in which the user can select which
methods are part of the comparative analysis. In the context of ADNI results, which is the
most developed experiment within this thesis, it is necessary to consider the exploration of
the reported features in a clinical context. Two scientific works are already made with this
experiment and more work is needed to have more clinical importance on the results. Explo-
ration of those features considering the limitations of the population can be done on future
experimentation. Regarding the BRCA Wisconsin dataset, despite literature stating that Cox
could not lead to good results in this dataset, the data preparation can be different to explore
something different. May be Cox with the feature selection process works better with this
data if the derived information is more informative. Regarding San Jose BRCA dataset, the
exploration of this survival information was not expected to have any results. In fact, the small
number of cases and the vast number of features lead to the failure of almost all models. Fur-
thermore, BSWiMS got promising results on that dataset. With the acquisition of more patient
data, the results could be better and have more scientific impact. Finally regarding OAI, this
experiment is the first exploration of survival analysis with Cox in the TKR event. A detailed
scientific work can be performed and the features reported can be clinically analyzed. As we
can note, the implementation of CoxBenchmarking resulted in invaluable information. Fur-
ther, there is a lot of work to do, to socialize, check and test its use in many computer-aided
diagnosis fields.
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R., DOMÍNGUEZ-ORTÍZ, J., WEGMAN-OSTROSKY, T., BARGALLÓ-ROCHA,
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MEDADES MÚSCULO ARTICULARES (GEEMA). Epidemiology of the Rheumatic
Diseases in Mexico. A Study of 5 Regions Based on the COPCORD Methodology.
The Journal of Rheumatology Supplement 86, 0 (jan 2011), 3–8.



142 BIBLIOGRAPHY

[83] PETERFY, C. G., SCHNEIDER, E., AND NEVITT, M. The osteoarthritis initiative:
report on the design rationale for the magnetic resonance imaging protocol for the
knee. Osteoarthritis and cartilage 16, 12 (dec 2008), 1433–41.

[84] PETERSEN, R. C., AISEN, P. S., BECKETT, L. A., DONOHUE, M. C., GAMST,
A. C., HARVEY, D. J., JACK, C. R., JAGUST, W. J., SHAW, L. M., TOGA, A. W.,
TROJANOWSKI, J. Q., WEINER, M. W., AND WEINER, M. W. Alzheimer’s Disease
Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74, 3 (jan 2010),
201–9.

[85] POPP, J., WOLFSGRUBER, S., HEUSER, I., PETERS, O., HÜLL, M., SCHRÖDER,
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